![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > funssres | Unicode version |
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
funssres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3497 | . . . . . . 7 | |
2 | vex 3112 | . . . . . . . . 9 | |
3 | vex 3112 | . . . . . . . . 9 | |
4 | 2, 3 | opeldm 5211 | . . . . . . . 8 |
5 | 4 | a1i 11 | . . . . . . 7 |
6 | 1, 5 | jcad 533 | . . . . . 6 |
7 | 6 | adantl 466 | . . . . 5 |
8 | funeu2 5618 | . . . . . . . . . . . 12 | |
9 | 2 | eldm2 5206 | . . . . . . . . . . . . . 14 |
10 | 1 | ancrd 554 | . . . . . . . . . . . . . . 15 |
11 | 10 | eximdv 1710 | . . . . . . . . . . . . . 14 |
12 | 9, 11 | syl5bi 217 | . . . . . . . . . . . . 13 |
13 | 12 | imp 429 | . . . . . . . . . . . 12 |
14 | eupick 2358 | . . . . . . . . . . . 12 | |
15 | 8, 13, 14 | syl2an 477 | . . . . . . . . . . 11 |
16 | 15 | exp43 612 | . . . . . . . . . 10 |
17 | 16 | com23 78 | . . . . . . . . 9 |
18 | 17 | imp 429 | . . . . . . . 8 |
19 | 18 | com34 83 | . . . . . . 7 |
20 | 19 | pm2.43d 48 | . . . . . 6 |
21 | 20 | impd 431 | . . . . 5 |
22 | 7, 21 | impbid 191 | . . . 4 |
23 | 3 | opelres 5284 | . . . 4 |
24 | 22, 23 | syl6rbbr 264 | . . 3 |
25 | 24 | alrimivv 1720 | . 2 |
26 | relres 5306 | . . 3 | |
27 | funrel 5610 | . . . 4 | |
28 | relss 5095 | . . . 4 | |
29 | 27, 28 | mpan9 469 | . . 3 |
30 | eqrel 5097 | . . 3 | |
31 | 26, 29, 30 | sylancr 663 | . 2 |
32 | 25, 31 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 E! weu 2282
C_ wss 3475 <. cop 4035 dom cdm 5004
|` cres 5006 Rel wrel 5009 Fun wfun 5587 |
This theorem is referenced by: fun2ssres 5634 funcnvres 5662 funssfv 5886 oprssov 6444 isngp2 21117 dvres3 22317 dvres3a 22318 dchrelbas2 23512 funpsstri 29195 funsseq 29199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-fun 5595 |
Copyright terms: Public domain | W3C validator |