![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > funtpg | Unicode version |
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
Ref | Expression |
---|---|
funtpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 993 | . . . 4 | |
2 | 3simpa 993 | . . . 4 | |
3 | simp1 996 | . . . 4 | |
4 | funprg 5642 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3an 1270 | . . 3 |
6 | simp13 1028 | . . . 4 | |
7 | simp23 1031 | . . . 4 | |
8 | funsng 5639 | . . . 4 | |
9 | 6, 7, 8 | syl2anc 661 | . . 3 |
10 | 2 | 3ad2ant2 1018 | . . . . . 6 |
11 | dmpropg 5486 | . . . . . 6 | |
12 | 10, 11 | syl 16 | . . . . 5 |
13 | dmsnopg 5484 | . . . . . 6 | |
14 | 7, 13 | syl 16 | . . . . 5 |
15 | 12, 14 | ineq12d 3700 | . . . 4 |
16 | elpri 4049 | . . . . . . . 8 | |
17 | nne 2658 | . . . . . . . . . . . . 13 | |
18 | 17 | biimpri 206 | . . . . . . . . . . . 12 |
19 | 18 | eqcoms 2469 | . . . . . . . . . . 11 |
20 | 19 | 3mix2d 1172 | . . . . . . . . . 10 |
21 | nne 2658 | . . . . . . . . . . . . 13 | |
22 | 21 | biimpri 206 | . . . . . . . . . . . 12 |
23 | 22 | eqcoms 2469 | . . . . . . . . . . 11 |
24 | 23 | 3mix3d 1173 | . . . . . . . . . 10 |
25 | 20, 24 | jaoi 379 | . . . . . . . . 9 |
26 | 3ianor 990 | . . . . . . . . 9 | |
27 | 25, 26 | sylibr 212 | . . . . . . . 8 |
28 | 16, 27 | syl 16 | . . . . . . 7 |
29 | 28 | con2i 120 | . . . . . 6 |
30 | disjsn 4090 | . . . . . 6 | |
31 | 29, 30 | sylibr 212 | . . . . 5 |
32 | 31 | 3ad2ant3 1019 | . . . 4 |
33 | 15, 32 | eqtrd 2498 | . . 3 |
34 | funun 5635 | . . 3 | |
35 | 5, 9, 33, 34 | syl21anc 1227 | . 2 |
36 | df-tp 4034 | . . 3 | |
37 | 36 | funeqi 5613 | . 2 |
38 | 35, 37 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 \/ w3o 972
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 { cpr 4031
{ ctp 4033 <. cop 4035 dom cdm 5004
Fun wfun 5587 |
This theorem is referenced by: fntpg 5648 constr2spthlem1 24596 estrres 32645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-fun 5595 |
Copyright terms: Public domain | W3C validator |