![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > funun | Unicode version |
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
funun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5610 | . . . . 5 | |
2 | funrel 5610 | . . . . 5 | |
3 | 1, 2 | anim12i 566 | . . . 4 |
4 | relun 5124 | . . . 4 | |
5 | 3, 4 | sylibr 212 | . . 3 |
6 | 5 | adantr 465 | . 2 |
7 | elun 3644 | . . . . . . . 8 | |
8 | elun 3644 | . . . . . . . 8 | |
9 | 7, 8 | anbi12i 697 | . . . . . . 7 |
10 | anddi 870 | . . . . . . 7 | |
11 | 9, 10 | bitri 249 | . . . . . 6 |
12 | disj1 3869 | . . . . . . . . . . . . 13 | |
13 | 12 | biimpi 194 | . . . . . . . . . . . 12 |
14 | 13 | 19.21bi 1869 | . . . . . . . . . . 11 |
15 | imnan 422 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylib 196 | . . . . . . . . . 10 |
17 | vex 3112 | . . . . . . . . . . . 12 | |
18 | vex 3112 | . . . . . . . . . . . 12 | |
19 | 17, 18 | opeldm 5211 | . . . . . . . . . . 11 |
20 | vex 3112 | . . . . . . . . . . . 12 | |
21 | 17, 20 | opeldm 5211 | . . . . . . . . . . 11 |
22 | 19, 21 | anim12i 566 | . . . . . . . . . 10 |
23 | 16, 22 | nsyl 121 | . . . . . . . . 9 |
24 | orel2 383 | . . . . . . . . 9 | |
25 | 23, 24 | syl 16 | . . . . . . . 8 |
26 | 14 | con2d 115 | . . . . . . . . . . 11 |
27 | imnan 422 | . . . . . . . . . . 11 | |
28 | 26, 27 | sylib 196 | . . . . . . . . . 10 |
29 | 17, 18 | opeldm 5211 | . . . . . . . . . . 11 |
30 | 17, 20 | opeldm 5211 | . . . . . . . . . . 11 |
31 | 29, 30 | anim12i 566 | . . . . . . . . . 10 |
32 | 28, 31 | nsyl 121 | . . . . . . . . 9 |
33 | orel1 382 | . . . . . . . . 9 | |
34 | 32, 33 | syl 16 | . . . . . . . 8 |
35 | 25, 34 | orim12d 838 | . . . . . . 7 |
36 | 35 | adantl 466 | . . . . . 6 |
37 | 11, 36 | syl5bi 217 | . . . . 5 |
38 | dffun4 5605 | . . . . . . . . . 10 | |
39 | 38 | simprbi 464 | . . . . . . . . 9 |
40 | 39 | 19.21bi 1869 | . . . . . . . 8 |
41 | 40 | 19.21bbi 1870 | . . . . . . 7 |
42 | dffun4 5605 | . . . . . . . . . 10 | |
43 | 42 | simprbi 464 | . . . . . . . . 9 |
44 | 43 | 19.21bi 1869 | . . . . . . . 8 |
45 | 44 | 19.21bbi 1870 | . . . . . . 7 |
46 | 41, 45 | jaao 509 | . . . . . 6 |
47 | 46 | adantr 465 | . . . . 5 |
48 | 37, 47 | syld 44 | . . . 4 |
49 | 48 | alrimiv 1719 | . . 3 |
50 | 49 | alrimivv 1720 | . 2 |
51 | dffun4 5605 | . 2 | |
52 | 6, 50, 51 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 A. wal 1393
= wceq 1395 e. wcel 1818 u. cun 3473
i^i cin 3474 c0 3784 <. cop 4035 dom cdm 5004
Rel wrel 5009
Fun wfun 5587 |
This theorem is referenced by: funprg 5642 funtpg 5643 funtp 5645 fnun 5692 fvun 5943 tfrlem10 7075 sbthlem7 7653 sbthlem8 7654 fodomr 7688 funsnfsupp 7873 axdc3lem4 8854 strlemor1 14724 strleun 14727 wfrlem13 29355 bnj1421 34098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-fun 5595 |
Copyright terms: Public domain | W3C validator |