![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fv3 | Unicode version |
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fv3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5869 | . . 3 | |
2 | bi2 198 | . . . . . . . . . 10 | |
3 | 2 | alimi 1633 | . . . . . . . . 9 |
4 | vex 3112 | . . . . . . . . . 10 | |
5 | breq2 4456 | . . . . . . . . . 10 | |
6 | 4, 5 | ceqsalv 3137 | . . . . . . . . 9 |
7 | 3, 6 | sylib 196 | . . . . . . . 8 |
8 | 7 | anim2i 569 | . . . . . . 7 |
9 | 8 | eximi 1656 | . . . . . 6 |
10 | elequ2 1823 | . . . . . . . 8 | |
11 | breq2 4456 | . . . . . . . 8 | |
12 | 10, 11 | anbi12d 710 | . . . . . . 7 |
13 | 12 | cbvexv 2024 | . . . . . 6 |
14 | 9, 13 | sylib 196 | . . . . 5 |
15 | exsimpr 1678 | . . . . . 6 | |
16 | df-eu 2286 | . . . . . 6 | |
17 | 15, 16 | sylibr 212 | . . . . 5 |
18 | 14, 17 | jca 532 | . . . 4 |
19 | nfeu1 2294 | . . . . . . 7 | |
20 | nfv 1707 | . . . . . . . . 9 | |
21 | nfa1 1897 | . . . . . . . . 9 | |
22 | 20, 21 | nfan 1928 | . . . . . . . 8 |
23 | 22 | nfex 1948 | . . . . . . 7 |
24 | 19, 23 | nfim 1920 | . . . . . 6 |
25 | bi1 186 | . . . . . . . . . . . . . 14 | |
26 | ax-9 1822 | . . . . . . . . . . . . . 14 | |
27 | 25, 26 | syl6 33 | . . . . . . . . . . . . 13 |
28 | 27 | com23 78 | . . . . . . . . . . . 12 |
29 | 28 | impd 431 | . . . . . . . . . . 11 |
30 | 29 | sps 1865 | . . . . . . . . . 10 |
31 | 30 | anc2ri 558 | . . . . . . . . 9 |
32 | 31 | com12 31 | . . . . . . . 8 |
33 | 32 | eximdv 1710 | . . . . . . 7 |
34 | 16, 33 | syl5bi 217 | . . . . . 6 |
35 | 24, 34 | exlimi 1912 | . . . . 5 |
36 | 35 | imp 429 | . . . 4 |
37 | 18, 36 | impbii 188 | . . 3 |
38 | 1, 37 | bitri 249 | . 2 |
39 | 38 | abbi2i 2590 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 E! weu 2282
{ cab 2442 class class class wbr 4452
` cfv 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 |
Copyright terms: Public domain | W3C validator |