![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fvcofneq | Unicode version |
Description: The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
Ref | Expression |
---|---|
fvcofneq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . 4 | |
2 | elin 3686 | . . . . . 6 | |
3 | simpl 457 | . . . . . 6 | |
4 | 2, 3 | sylbi 195 | . . . . 5 |
5 | 4 | 3ad2ant1 1017 | . . . 4 |
6 | fvco2 5948 | . . . 4 | |
7 | 1, 5, 6 | syl2an 477 | . . 3 |
8 | simpr 461 | . . . . 5 | |
9 | simpr 461 | . . . . . . 7 | |
10 | 2, 9 | sylbi 195 | . . . . . 6 |
11 | 10 | 3ad2ant1 1017 | . . . . 5 |
12 | fvco2 5948 | . . . . 5 | |
13 | 8, 11, 12 | syl2an 477 | . . . 4 |
14 | fveq2 5871 | . . . . . . 7 | |
15 | 14 | eqcoms 2469 | . . . . . 6 |
16 | 15 | 3ad2ant2 1018 | . . . . 5 |
17 | 16 | adantl 466 | . . . 4 |
18 | id 22 | . . . . . . . . . . . 12 | |
19 | fnfvelrn 6028 | . . . . . . . . . . . 12 | |
20 | 18, 4, 19 | syl2anr 478 | . . . . . . . . . . 11 |
21 | 20 | ex 434 | . . . . . . . . . 10 |
22 | id 22 | . . . . . . . . . . . 12 | |
23 | fnfvelrn 6028 | . . . . . . . . . . . 12 | |
24 | 22, 10, 23 | syl2anr 478 | . . . . . . . . . . 11 |
25 | 24 | ex 434 | . . . . . . . . . 10 |
26 | 21, 25 | anim12d 563 | . . . . . . . . 9 |
27 | eleq1 2529 | . . . . . . . . . . . 12 | |
28 | 27 | eqcoms 2469 | . . . . . . . . . . 11 |
29 | 28 | anbi2d 703 | . . . . . . . . . 10 |
30 | elin 3686 | . . . . . . . . . . 11 | |
31 | 30 | biimpri 206 | . . . . . . . . . 10 |
32 | 29, 31 | syl6bi 228 | . . . . . . . . 9 |
33 | 26, 32 | sylan9 657 | . . . . . . . 8 |
34 | fveq2 5871 | . . . . . . . . . . . 12 | |
35 | fveq2 5871 | . . . . . . . . . . . 12 | |
36 | 34, 35 | eqeq12d 2479 | . . . . . . . . . . 11 |
37 | 36 | rspcva 3208 | . . . . . . . . . 10 |
38 | 37 | eqcomd 2465 | . . . . . . . . 9 |
39 | 38 | ex 434 | . . . . . . . 8 |
40 | 33, 39 | syl6 33 | . . . . . . 7 |
41 | 40 | com23 78 | . . . . . 6 |
42 | 41 | 3impia 1193 | . . . . 5 |
43 | 42 | impcom 430 | . . . 4 |
44 | 13, 17, 43 | 3eqtrrd 2503 | . . 3 |
45 | 7, 44 | eqtrd 2498 | . 2 |
46 | 45 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 i^i cin 3474
ran crn 5005 o. ccom 5008 Fn wfn 5588
` cfv 5593 |
This theorem is referenced by: fvcosymgeq 16454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |