MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdiagfn Unicode version

Theorem fvdiagfn 7483
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f
Assertion
Ref Expression
fvdiagfn
Distinct variable groups:   ,   ,I   ,   ,

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 461 . 2
2 snex 4693 . . . 4
3 xpexg 6602 . . . 4
42, 3mpan2 671 . . 3
54adantr 465 . 2
6 sneq 4039 . . . 4
76xpeq2d 5028 . . 3
8 fdiagfn.f . . 3
97, 8fvmptg 5954 . 2
101, 5, 9syl2anc 661 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  {csn 4029  e.cmpt 4510  X.cxp 5002  `cfv 5593
This theorem is referenced by:  pwsdiagmhm  16000  pwsdiaglmhm  17703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-iota 5556  df-fun 5595  df-fv 5601
  Copyright terms: Public domain W3C validator