![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fveqdmss | Unicode version |
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
fveqdmss.1 |
Ref | Expression |
---|---|
fveqdmss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . . . . . 9 | |
2 | fveq2 5871 | . . . . . . . . 9 | |
3 | 1, 2 | eqeq12d 2479 | . . . . . . . 8 |
4 | 3 | rspcva 3208 | . . . . . . 7 |
5 | nelrnfvne 6025 | . . . . . . . . . . . . 13 | |
6 | n0 3794 | . . . . . . . . . . . . . 14 | |
7 | eleq2 2530 | . . . . . . . . . . . . . . . . . 18 | |
8 | 7 | eqcoms 2469 | . . . . . . . . . . . . . . . . 17 |
9 | elfvdm 5897 | . . . . . . . . . . . . . . . . 17 | |
10 | 8, 9 | syl6bi 228 | . . . . . . . . . . . . . . . 16 |
11 | 10 | com12 31 | . . . . . . . . . . . . . . 15 |
12 | 11 | exlimiv 1722 | . . . . . . . . . . . . . 14 |
13 | 6, 12 | sylbi 195 | . . . . . . . . . . . . 13 |
14 | 5, 13 | syl 16 | . . . . . . . . . . . 12 |
15 | 14 | 3exp 1195 | . . . . . . . . . . 11 |
16 | 15 | com12 31 | . . . . . . . . . 10 |
17 | fveqdmss.1 | . . . . . . . . . 10 | |
18 | 16, 17 | eleq2s 2565 | . . . . . . . . 9 |
19 | 18 | com24 87 | . . . . . . . 8 |
20 | 19 | adantr 465 | . . . . . . 7 |
21 | 4, 20 | mpd 15 | . . . . . 6 |
22 | 21 | ex 434 | . . . . 5 |
23 | 22 | com23 78 | . . . 4 |
24 | 23 | com14 88 | . . 3 |
25 | 24 | 3imp 1190 | . 2 |
26 | 25 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 =/= wne 2652
e/ wnel 2653 A. wral 2807 C_ wss 3475
c0 3784 dom cdm 5004 ran crn 5005
Fun wfun 5587
` cfv 5593 |
This theorem is referenced by: fveqressseq 6027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |