![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fveqf1o | Unicode version |
Description: Given a bijection , produce another bijection which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
fveqf1o.1 |
Ref | Expression |
---|---|
fveqf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 996 | . . . 4 | |
2 | f1oi 5856 | . . . . . . . 8 | |
3 | 2 | a1i 11 | . . . . . . 7 |
4 | simp2 997 | . . . . . . . 8 | |
5 | f1ocnv 5833 | . . . . . . . . . 10 | |
6 | f1of 5821 | . . . . . . . . . 10 | |
7 | 1, 5, 6 | 3syl 20 | . . . . . . . . 9 |
8 | simp3 998 | . . . . . . . . 9 | |
9 | 7, 8 | ffvelrnd 6032 | . . . . . . . 8 |
10 | f1oprswap 5860 | . . . . . . . 8 | |
11 | 4, 9, 10 | syl2anc 661 | . . . . . . 7 |
12 | incom 3690 | . . . . . . . . 9 | |
13 | disjdif 3900 | . . . . . . . . 9 | |
14 | 12, 13 | eqtri 2486 | . . . . . . . 8 |
15 | 14 | a1i 11 | . . . . . . 7 |
16 | f1oun 5840 | . . . . . . 7 | |
17 | 3, 11, 15, 15, 16 | syl22anc 1229 | . . . . . 6 |
18 | uncom 3647 | . . . . . . . 8 | |
19 | prssi 4186 | . . . . . . . . . 10 | |
20 | 4, 9, 19 | syl2anc 661 | . . . . . . . . 9 |
21 | undif 3908 | . . . . . . . . 9 | |
22 | 20, 21 | sylib 196 | . . . . . . . 8 |
23 | 18, 22 | syl5eq 2510 | . . . . . . 7 |
24 | f1oeq2 5813 | . . . . . . 7 | |
25 | 23, 24 | syl 16 | . . . . . 6 |
26 | 17, 25 | mpbid 210 | . . . . 5 |
27 | f1oeq3 5814 | . . . . . 6 | |
28 | 23, 27 | syl 16 | . . . . 5 |
29 | 26, 28 | mpbid 210 | . . . 4 |
30 | f1oco 5843 | . . . 4 | |
31 | 1, 29, 30 | syl2anc 661 | . . 3 |
32 | fveqf1o.1 | . . . 4 | |
33 | f1oeq1 5812 | . . . 4 | |
34 | 32, 33 | ax-mp 5 | . . 3 |
35 | 31, 34 | sylibr 212 | . 2 |
36 | 32 | fveq1i 5872 | . . . 4 |
37 | f1of 5821 | . . . . . 6 | |
38 | 29, 37 | syl 16 | . . . . 5 |
39 | fvco3 5950 | . . . . 5 | |
40 | 38, 4, 39 | syl2anc 661 | . . . 4 |
41 | 36, 40 | syl5eq 2510 | . . 3 |
42 | fnresi 5703 | . . . . . . . 8 | |
43 | 42 | a1i 11 | . . . . . . 7 |
44 | f1ofn 5822 | . . . . . . . 8 | |
45 | 11, 44 | syl 16 | . . . . . . 7 |
46 | prid1g 4136 | . . . . . . . 8 | |
47 | 4, 46 | syl 16 | . . . . . . 7 |
48 | fvun2 5945 | . . . . . . 7 | |
49 | 43, 45, 15, 47, 48 | syl112anc 1232 | . . . . . 6 |
50 | f1ofun 5823 | . . . . . . . 8 | |
51 | 11, 50 | syl 16 | . . . . . . 7 |
52 | opex 4716 | . . . . . . . 8 | |
53 | 52 | prid1 4138 | . . . . . . 7 |
54 | funopfv 5912 | . . . . . . 7 | |
55 | 51, 53, 54 | mpisyl 18 | . . . . . 6 |
56 | 49, 55 | eqtrd 2498 | . . . . 5 |
57 | 56 | fveq2d 5875 | . . . 4 |
58 | f1ocnvfv2 6183 | . . . . 5 | |
59 | 1, 8, 58 | syl2anc 661 | . . . 4 |
60 | 57, 59 | eqtrd 2498 | . . 3 |
61 | 41, 60 | eqtrd 2498 | . 2 |
62 | 35, 61 | jca 532 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 \ cdif 3472 u. cun 3473
i^i cin 3474 C_ wss 3475 c0 3784 { cpr 4031 <. cop 4035
cid 4795
`' ccnv 5003 |` cres 5006 o. ccom 5008
Fun wfun 5587
Fn wfn 5588 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 |
This theorem is referenced by: infxpenc2 8420 infxpenc2OLD 8424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |