![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fveqressseq | Unicode version |
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
fveqdmss.1 |
Ref | Expression |
---|---|
fveqressseq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5299 | . . 3 | |
2 | fveqdmss.1 | . . . . 5 | |
3 | 2 | fveqdmss 6026 | . . . 4 |
4 | incom 3690 | . . . . . 6 | |
5 | dfss1 3702 | . . . . . . 7 | |
6 | 5 | biimpi 194 | . . . . . 6 |
7 | 4, 6 | syl5eq 2510 | . . . . 5 |
8 | 7, 2 | syl6eq 2514 | . . . 4 |
9 | 3, 8 | syl 16 | . . 3 |
10 | 1, 9 | syl5eq 2510 | . 2 |
11 | fvres 5885 | . . . . . . . . 9 | |
12 | 11 | adantl 466 | . . . . . . . 8 |
13 | 12 | adantr 465 | . . . . . . 7 |
14 | simpr 461 | . . . . . . 7 | |
15 | 13, 14 | eqtrd 2498 | . . . . . 6 |
16 | 15 | ex 434 | . . . . 5 |
17 | 16 | ralimdva 2865 | . . . 4 |
18 | 17 | 3impia 1193 | . . 3 |
19 | 3, 7 | syl 16 | . . . . 5 |
20 | 1, 19 | syl5eq 2510 | . . . 4 |
21 | 20 | raleqdv 3060 | . . 3 |
22 | 18, 21 | mpbird 232 | . 2 |
23 | simpll 753 | . . . . . . . 8 | |
24 | 2 | eleq2i 2535 | . . . . . . . . . 10 |
25 | 24 | biimpi 194 | . . . . . . . . 9 |
26 | 25 | adantl 466 | . . . . . . . 8 |
27 | simpr 461 | . . . . . . . . 9 | |
28 | 27 | adantr 465 | . . . . . . . 8 |
29 | nelrnfvne 6025 | . . . . . . . 8 | |
30 | 23, 26, 28, 29 | syl3anc 1228 | . . . . . . 7 |
31 | neeq1 2738 | . . . . . . 7 | |
32 | 30, 31 | syl5ibrcom 222 | . . . . . 6 |
33 | 32 | ralimdva 2865 | . . . . 5 |
34 | 33 | 3impia 1193 | . . . 4 |
35 | fvn0ssdmfun 6022 | . . . . 5 | |
36 | 35 | simprd 463 | . . . 4 |
37 | 34, 36 | syl 16 | . . 3 |
38 | simp1 996 | . . 3 | |
39 | eqfunfv 5986 | . . 3 | |
40 | 37, 38, 39 | syl2anc 661 | . 2 |
41 | 10, 22, 40 | mpbir2and 922 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 e/ wnel 2653
A. wral 2807 i^i cin 3474 C_ wss 3475
c0 3784 dom cdm 5004 ran crn 5005
|` cres 5006 Fun wfun 5587 ` cfv 5593 |
This theorem is referenced by: plusfreseq 32460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |