![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fvmpt2curryd | Unicode version |
Description: The value of the value of a curried operation given in maps-to notation is the operation value of the original operation. (Contributed by AV, 27-Oct-2019.) |
Ref | Expression |
---|---|
fvmpt2curryd.f | |
fvmpt2curryd.c | |
fvmpt2curryd.y | |
fvmpt2curryd.a | |
fvmpt2curryd.b |
Ref | Expression |
---|---|
fvmpt2curryd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt2curryd.b | . . 3 | |
2 | csbcom 3837 | . . . . 5 | |
3 | csbco 3444 | . . . . . 6 | |
4 | 3 | csbeq2i 3836 | . . . . 5 |
5 | csbcom 3837 | . . . . . 6 | |
6 | csbco 3444 | . . . . . . 7 | |
7 | 6 | csbeq2i 3836 | . . . . . 6 |
8 | 5, 7 | eqtri 2486 | . . . . 5 |
9 | 2, 4, 8 | 3eqtri 2490 | . . . 4 |
10 | fvmpt2curryd.a | . . . . 5 | |
11 | fvmpt2curryd.c | . . . . 5 | |
12 | nfcsb1v 3450 | . . . . . . . 8 | |
13 | 12 | nfel1 2635 | . . . . . . 7 |
14 | nfcsb1v 3450 | . . . . . . . 8 | |
15 | 14 | nfel1 2635 | . . . . . . 7 |
16 | csbeq1a 3443 | . . . . . . . 8 | |
17 | 16 | eleq1d 2526 | . . . . . . 7 |
18 | csbeq1a 3443 | . . . . . . . 8 | |
19 | 18 | eleq1d 2526 | . . . . . . 7 |
20 | 13, 15, 17, 19 | rspc2 3218 | . . . . . 6 |
21 | 20 | imp 429 | . . . . 5 |
22 | 10, 1, 11, 21 | syl21anc 1227 | . . . 4 |
23 | 9, 22 | syl5eqel 2549 | . . 3 |
24 | eqid 2457 | . . . 4 | |
25 | 24 | fvmpts 5958 | . . 3 |
26 | 1, 23, 25 | syl2anc 661 | . 2 |
27 | fvmpt2curryd.f | . . . . 5 | |
28 | nfcv 2619 | . . . . . 6 | |
29 | nfcv 2619 | . . . . . 6 | |
30 | nfcv 2619 | . . . . . . 7 | |
31 | nfcsb1v 3450 | . . . . . . 7 | |
32 | 30, 31 | nfcsb 3452 | . . . . . 6 |
33 | nfcsb1v 3450 | . . . . . 6 | |
34 | csbeq1a 3443 | . . . . . . 7 | |
35 | csbeq1a 3443 | . . . . . . 7 | |
36 | 34, 35 | sylan9eq 2518 | . . . . . 6 |
37 | 28, 29, 32, 33, 36 | cbvmpt2 6376 | . . . . 5 |
38 | 27, 37 | eqtri 2486 | . . . 4 |
39 | 31 | nfel1 2635 | . . . . . . 7 |
40 | 33 | nfel1 2635 | . . . . . . 7 |
41 | 34 | eleq1d 2526 | . . . . . . 7 |
42 | 35 | eleq1d 2526 | . . . . . . 7 |
43 | 39, 40, 41, 42 | rspc2 3218 | . . . . . 6 |
44 | 11, 43 | mpan9 469 | . . . . 5 |
45 | 44 | ralrimivva 2878 | . . . 4 |
46 | ne0i 3790 | . . . . 5 | |
47 | 1, 46 | syl 16 | . . . 4 |
48 | fvmpt2curryd.y | . . . 4 | |
49 | 38, 45, 47, 48, 10 | mpt2curryvald 7018 | . . 3 |
50 | 49 | fveq1d 5873 | . 2 |
51 | 27 | a1i 11 | . . 3 |
52 | csbco 3444 | . . . . . . . 8 | |
53 | csbid 3442 | . . . . . . . 8 | |
54 | 52, 53 | eqtr2i 2487 | . . . . . . 7 |
55 | 54 | a1i 11 | . . . . . 6 |
56 | 55 | csbeq2dv 3835 | . . . . 5 |
57 | csbco 3444 | . . . . . 6 | |
58 | csbid 3442 | . . . . . 6 | |
59 | 57, 58 | eqtri 2486 | . . . . 5 |
60 | csbcom 3837 | . . . . 5 | |
61 | 56, 59, 60 | 3eqtr3g 2521 | . . . 4 |
62 | csbeq1 3437 | . . . . . . 7 | |
63 | 62 | adantr 465 | . . . . . 6 |
64 | 63 | csbeq2dv 3835 | . . . . 5 |
65 | csbeq1 3437 | . . . . . 6 | |
66 | 65 | adantl 466 | . . . . 5 |
67 | 64, 66 | eqtrd 2498 | . . . 4 |
68 | 61, 67 | sylan9eq 2518 | . . 3 |
69 | eqidd 2458 | . . 3 | |
70 | nfv 1707 | . . 3 | |
71 | nfv 1707 | . . 3 | |
72 | nfcv 2619 | . . 3 | |
73 | nfcv 2619 | . . 3 | |
74 | nfcv 2619 | . . . . 5 | |
75 | 74, 32 | nfcsb 3452 | . . . 4 |
76 | 73, 75 | nfcsb 3452 | . . 3 |
77 | 9, 14 | nfcxfr 2617 | . . 3 |
78 | 51, 68, 69, 10, 1, 23, 70, 71, 72, 73, 76, 77 | ovmpt2dxf 6428 | . 2 |
79 | 26, 50, 78 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 [_ csb 3434 c0 3784 e. cmpt 4510 ` cfv 5593
(class class class)co 6296 e. cmpt2 6298 curry ccur 7013 |
This theorem is referenced by: pmatcollpw3lem 19284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-cur 7015 |
Copyright terms: Public domain | W3C validator |