![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Unicode version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | |
fvmpt3.b | |
fvmpt3i.c |
Ref | Expression |
---|---|
fvmpt3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 | |
2 | fvmpt3.b | . 2 | |
3 | fvmpt3i.c | . . 3 | |
4 | 3 | a1i 11 | . 2 |
5 | 1, 2, 4 | fvmpt3 5959 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 cvv 3109
e. cmpt 4510 ` cfv 5593 |
This theorem is referenced by: isf32lem9 8762 axcc2lem 8837 caucvg 13501 ismre 14987 mrisval 15027 frmdup1 16032 frmdup2 16033 qusghm 16303 pmtrfval 16475 odf1 16584 vrgpfval 16784 dprdz 17077 dmdprdsplitlem 17084 dmdprdsplitlemOLD 17085 dprd2dlem2 17089 dprd2dlem1 17090 dprd2da 17091 ablfac1a 17120 ablfac1b 17121 ablfac1eu 17124 ipdir 18674 ipass 18680 isphld 18689 istopon 19426 qustgpopn 20618 qustgplem 20619 tchcph 21680 cmvth 22392 mvth 22393 dvle 22408 lhop1 22415 dvfsumlem3 22429 pige3 22910 fsumdvdscom 23461 logfacbnd3 23498 dchrptlem1 23539 dchrptlem2 23540 lgsdchrval 23622 dchrisumlem3 23676 dchrisum0flblem1 23693 dchrisum0fno1 23696 dchrisum0lem1b 23700 dchrisum0lem2a 23702 dchrisum0lem2 23703 logsqvma2 23728 log2sumbnd 23729 sgnsv 27717 measdivcstOLD 28195 measdivcst 28196 mrexval 28861 mexval 28862 mdvval 28864 msubvrs 28920 mthmval 28935 upixp 30220 ismrer1 30334 uzmptshftfval 31251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |