![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fvmpts | Unicode version |
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmpts.1 |
Ref | Expression |
---|---|
fvmpts |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3437 | . 2 | |
2 | fvmpts.1 | . . 3 | |
3 | nfcv 2619 | . . . 4 | |
4 | nfcsb1v 3450 | . . . 4 | |
5 | csbeq1a 3443 | . . . 4 | |
6 | 3, 4, 5 | cbvmpt 4542 | . . 3 |
7 | 2, 6 | eqtri 2486 | . 2 |
8 | 1, 7 | fvmptg 5954 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 [_ csb 3434
e. cmpt 4510 ` cfv 5593 |
This theorem is referenced by: fvmptd 5961 fvmpt2curryd 7019 mptnn0fsupp 12103 mptnn0fsuppr 12105 zsum 13540 prodss 13754 fprodser 13756 fprodn0 13783 fprodefsum 13830 pcmpt 14411 issubc 15204 gsummptnn0fz 17014 mptscmfsupp0 17576 gsummoncoe1 18346 fvmptnn04if 19350 prdsdsf 20870 itgparts 22448 dchrisumlema 23673 abfmpeld 27492 abfmpel 27493 aomclem6 31005 ellimcabssub0 31623 constlimc 31630 cdlemk40 36643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |