MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss2 Unicode version

Theorem fvmptss2 5975
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
fvmptn.1
fvmptn.2
Assertion
Ref Expression
fvmptss2
Distinct variable groups:   ,   ,   ,

Proof of Theorem fvmptss2
StepHypRef Expression
1 fvmptn.1 . . . . 5
21eleq1d 2526 . . . 4
3 fvmptn.2 . . . . 5
43dmmpt 5507 . . . 4
52, 4elrab2 3259 . . 3
61, 3fvmptg 5954 . . . 4
7 eqimss 3555 . . . 4
86, 7syl 16 . . 3
95, 8sylbi 195 . 2
10 ndmfv 5895 . . 3
11 0ss 3814 . . 3
1210, 11syl6eqss 3553 . 2
139, 12pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  C_wss 3475   c0 3784  e.cmpt 4510  domcdm 5004  `cfv 5593
This theorem is referenced by:  cvmsi  28710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fv 5601
  Copyright terms: Public domain W3C validator