![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fvsnun1 | Unicode version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 6107. (Contributed by NM, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | |
fvsnun.2 | |
fvsnun.3 |
Ref | Expression |
---|---|
fvsnun1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 | |
2 | 1 | reseq1i 5274 | . . . 4 |
3 | resundir 5293 | . . . . 5 | |
4 | incom 3690 | . . . . . . . . 9 | |
5 | disjdif 3900 | . . . . . . . . 9 | |
6 | 4, 5 | eqtri 2486 | . . . . . . . 8 |
7 | resdisj 5441 | . . . . . . . 8 | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 |
9 | 8 | uneq2i 3654 | . . . . . 6 |
10 | un0 3810 | . . . . . 6 | |
11 | 9, 10 | eqtri 2486 | . . . . 5 |
12 | 3, 11 | eqtri 2486 | . . . 4 |
13 | 2, 12 | eqtri 2486 | . . 3 |
14 | 13 | fveq1i 5872 | . 2 |
15 | fvsnun.1 | . . . 4 | |
16 | 15 | snid 4057 | . . 3 |
17 | fvres 5885 | . . 3 | |
18 | 16, 17 | ax-mp 5 | . 2 |
19 | fvres 5885 | . . . 4 | |
20 | 16, 19 | ax-mp 5 | . . 3 |
21 | fvsnun.2 | . . . 4 | |
22 | 15, 21 | fvsn 6104 | . . 3 |
23 | 20, 22 | eqtri 2486 | . 2 |
24 | 14, 18, 23 | 3eqtr3i 2494 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 <. cop 4035
|` cres 5006 ` cfv 5593 |
This theorem is referenced by: fac0 12356 ruclem4 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |