![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fzo0 | Unicode version |
Description: Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzo0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzonel 11841 | . 2 | |
2 | fzon0 11845 | . . 3 | |
3 | 2 | necon1bbii 2721 | . 2 |
4 | 1, 3 | mpbi 208 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 = wceq 1395
e. wcel 1818 c0 3784 (class class class)co 6296
cfzo 11824 |
This theorem is referenced by: hashfzo 12487 iswrdi 12552 wrd0 12565 iswrddm0 12567 swrd00 12645 repswsymballbi 12752 0csh0 12764 cshw1 12790 telfsumo 13616 fsumparts 13620 0bits 14089 bitsinv1 14092 sadcadd 14108 sadadd2 14110 smumullem 14142 cshws0 14586 gsmsymgrfix 16453 psgnunilem3 16521 efgs1 16753 volsup 21966 dchrisumlem1 23674 dchrisumlem3 23676 istrkg2ld 23858 0wlk 24547 0trl 24548 1pthonlem1 24591 1pthonlem2 24592 wwlkn0s 24705 signstfvneq0 28529 signsvf1 28538 2ffzoeq 32341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 |
Copyright terms: Public domain | W3C validator |