![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gcdcllem2 | Unicode version |
Description: Lemma for gcdn0cl 14152, gcddvds 14153 and dvdslegcd 14154. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
gcdcllem2.1 | |
gcdcllem2.2 |
Ref | Expression |
---|---|
gcdcllem2 |
M
,N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4455 | . . . . . 6 | |
2 | 1 | ralbidv 2896 | . . . . 5 |
3 | gcdcllem2.1 | . . . . 5 | |
4 | 2, 3 | elrab2 3259 | . . . 4 |
5 | breq2 4456 | . . . . . 6 | |
6 | breq2 4456 | . . . . . 6 | |
7 | 5, 6 | ralprg 4078 | . . . . 5 |
8 | 7 | anbi2d 703 | . . . 4 |
9 | 4, 8 | syl5bb 257 | . . 3 |
10 | breq1 4455 | . . . . 5 | |
11 | breq1 4455 | . . . . 5 | |
12 | 10, 11 | anbi12d 710 | . . . 4 |
13 | gcdcllem2.2 | . . . 4 | |
14 | 12, 13 | elrab2 3259 | . . 3 |
15 | 9, 14 | syl6rbbr 264 | . 2 |
16 | 15 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
{ crab 2811 { cpr 4031 class class class wbr 4452
cz 10889 cdvds 13986 |
This theorem is referenced by: gcdcllem3 14151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 |
Copyright terms: Public domain | W3C validator |