![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gcdmultiple | Unicode version |
Description: The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
gcdmultiple |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . . . 6 | |
2 | 1 | oveq2d 6312 | . . . . 5 |
3 | 2 | eqeq1d 2459 | . . . 4 |
4 | 3 | imbi2d 316 | . . 3 |
5 | oveq2 6304 | . . . . . 6 | |
6 | 5 | oveq2d 6312 | . . . . 5 |
7 | 6 | eqeq1d 2459 | . . . 4 |
8 | 7 | imbi2d 316 | . . 3 |
9 | oveq2 6304 | . . . . . 6 | |
10 | 9 | oveq2d 6312 | . . . . 5 |
11 | 10 | eqeq1d 2459 | . . . 4 |
12 | 11 | imbi2d 316 | . . 3 |
13 | oveq2 6304 | . . . . . 6 | |
14 | 13 | oveq2d 6312 | . . . . 5 |
15 | 14 | eqeq1d 2459 | . . . 4 |
16 | 15 | imbi2d 316 | . . 3 |
17 | nncn 10569 | . . . . . 6 | |
18 | 17 | mulid1d 9634 | . . . . 5 |
19 | 18 | oveq2d 6312 | . . . 4 |
20 | nnz 10911 | . . . . . 6 | |
21 | gcdid 14169 | . . . . . 6 | |
22 | 20, 21 | syl 16 | . . . . 5 |
23 | nnre 10568 | . . . . . 6 | |
24 | nnnn0 10827 | . . . . . . 7 | |
25 | 24 | nn0ge0d 10880 | . . . . . 6 |
26 | 23, 25 | absidd 13254 | . . . . 5 |
27 | 22, 26 | eqtrd 2498 | . . . 4 |
28 | 19, 27 | eqtrd 2498 | . . 3 |
29 | 20 | adantr 465 | . . . . . . . . 9 |
30 | nnz 10911 | . . . . . . . . . 10 | |
31 | zmulcl 10937 | . . . . . . . . . 10 | |
32 | 20, 30, 31 | syl2an 477 | . . . . . . . . 9 |
33 | 1z 10919 | . . . . . . . . . 10 | |
34 | gcdaddm 14167 | . . . . . . . . . 10 | |
35 | 33, 34 | mp3an1 1311 | . . . . . . . . 9 |
36 | 29, 32, 35 | syl2anc 661 | . . . . . . . 8 |
37 | nncn 10569 | . . . . . . . . . 10 | |
38 | ax-1cn 9571 | . . . . . . . . . . . 12 | |
39 | adddi 9602 | . . . . . . . . . . . 12 | |
40 | 38, 39 | mp3an3 1313 | . . . . . . . . . . 11 |
41 | mulcom 9599 | . . . . . . . . . . . . . 14 | |
42 | 38, 41 | mpan2 671 | . . . . . . . . . . . . 13 |
43 | 42 | adantr 465 | . . . . . . . . . . . 12 |
44 | 43 | oveq2d 6312 | . . . . . . . . . . 11 |
45 | 40, 44 | eqtrd 2498 | . . . . . . . . . 10 |
46 | 17, 37, 45 | syl2an 477 | . . . . . . . . 9 |
47 | 46 | oveq2d 6312 | . . . . . . . 8 |
48 | 36, 47 | eqtr4d 2501 | . . . . . . 7 |
49 | 48 | eqeq1d 2459 | . . . . . 6 |
50 | 49 | biimpd 207 | . . . . 5 |
51 | 50 | expcom 435 | . . . 4 |
52 | 51 | a2d 26 | . . 3 |
53 | 4, 8, 12, 16, 28, 52 | nnind 10579 | . 2 |
54 | 53 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 ` cfv 5593
(class class class)co 6296 cc 9511 1 c1 9514 caddc 9516 cmul 9518 cn 10561 cz 10889 cabs 13067 cgcd 14144 |
This theorem is referenced by: gcdmultiplez 14189 rpmulgcd 14193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 |
Copyright terms: Public domain | W3C validator |