![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gchen2 | Unicode version |
Description: If A ~P A , and is an infinite GCH-set, then
in cardinality. (Contributed by Mario Carneiro,
15-May-2015.) |
Ref | Expression |
---|---|
gchen2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 757 | . 2 | |
2 | gchi 9023 | . . . . . 6 | |
3 | 2 | 3expia 1198 | . . . . 5 |
4 | 3 | con3dimp 441 | . . . 4 |
5 | 4 | an32s 804 | . . 3 |
6 | 5 | adantrr 716 | . 2 |
7 | bren2 7566 | . 2 | |
8 | 1, 6, 7 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 e. wcel 1818 ~P cpw 4012
class class class wbr 4452 cen 7533 cdom 7534 csdm 7535 cfn 7536 cgch 9019 |
This theorem is referenced by: gchhar 9078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-f1o 5600 df-en 7537 df-dom 7538 df-sdom 7539 df-gch 9020 |
Copyright terms: Public domain | W3C validator |