![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gencbvex | Unicode version |
Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
gencbvex.1 | |
gencbvex.2 | |
gencbvex.3 | |
gencbvex.4 |
Ref | Expression |
---|---|
gencbvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1849 | . 2 | |
2 | gencbvex.1 | . . . 4 | |
3 | gencbvex.3 | . . . . . . 7 | |
4 | gencbvex.2 | . . . . . . 7 | |
5 | 3, 4 | anbi12d 710 | . . . . . 6 |
6 | 5 | bicomd 201 | . . . . 5 |
7 | 6 | eqcoms 2469 | . . . 4 |
8 | 2, 7 | ceqsexv 3146 | . . 3 |
9 | 8 | exbii 1667 | . 2 |
10 | 19.41v 1771 | . . . 4 | |
11 | simpr 461 | . . . . 5 | |
12 | gencbvex.4 | . . . . . . . 8 | |
13 | eqcom 2466 | . . . . . . . . . . 11 | |
14 | 13 | biimpi 194 | . . . . . . . . . 10 |
15 | 14 | adantl 466 | . . . . . . . . 9 |
16 | 15 | eximi 1656 | . . . . . . . 8 |
17 | 12, 16 | sylbi 195 | . . . . . . 7 |
18 | 17 | adantr 465 | . . . . . 6 |
19 | 18 | ancri 552 | . . . . 5 |
20 | 11, 19 | impbii 188 | . . . 4 |
21 | 10, 20 | bitri 249 | . . 3 |
22 | 21 | exbii 1667 | . 2 |
23 | 1, 9, 22 | 3bitr3i 275 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109 |
This theorem is referenced by: gencbvex2 3154 gencbval 3155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |