![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > genpelv | Unicode version |
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | |
genp.2 |
Ref | Expression |
---|---|
genpelv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 | |
2 | genp.2 | . . . 4 | |
3 | 1, 2 | genpv 9398 | . . 3 |
4 | 3 | eleq2d 2527 | . 2 |
5 | id 22 | . . . . . 6 | |
6 | ovex 6324 | . . . . . 6 | |
7 | 5, 6 | syl6eqel 2553 | . . . . 5 |
8 | 7 | rexlimivw 2946 | . . . 4 |
9 | 8 | rexlimivw 2946 | . . 3 |
10 | eqeq1 2461 | . . . 4 | |
11 | 10 | 2rexbidv 2975 | . . 3 |
12 | 9, 11 | elab3 3253 | . 2 |
13 | 4, 12 | syl6bb 261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
{ cab 2442 E. wrex 2808 cvv 3109
(class class class)co 6296 e. cmpt2 6298 cnq 9251
cnp 9258 |
This theorem is referenced by: genpprecl 9400 genpss 9403 genpnnp 9404 genpcd 9405 genpnmax 9406 genpass 9408 distrlem1pr 9424 distrlem5pr 9426 1idpr 9428 ltexprlem6 9440 reclem3pr 9448 reclem4pr 9449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-ni 9271 df-nq 9311 df-np 9380 |
Copyright terms: Public domain | W3C validator |