![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > genpprecl | Unicode version |
Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | |
genp.2 |
Ref | Expression |
---|---|
genpprecl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . 3 | |
2 | rspceov 6336 | . . 3 | |
3 | 1, 2 | mp3an3 1313 | . 2 |
4 | genp.1 | . . 3 | |
5 | genp.2 | . . 3 | |
6 | 4, 5 | genpelv 9399 | . 2 |
7 | 3, 6 | syl5ibr 221 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
E. wrex 2808 (class class class)co 6296
e. cmpt2 6298 cnq 9251
cnp 9258 |
This theorem is referenced by: genpn0 9402 genpnmax 9406 addclprlem2 9416 mulclprlem 9418 distrlem1pr 9424 distrlem4pr 9425 ltaddpr 9433 ltexprlem7 9441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-ni 9271 df-nq 9311 df-np 9380 |
Copyright terms: Public domain | W3C validator |