![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > geolim2 | Unicode version |
Description: The partial sums in the
geometric series A M A ( M 1 ) ...
converge to . (Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro,
26-Apr-2014.) |
Ref | Expression |
---|---|
geolim.1 | |
geolim.2 | |
geolim2.3 | |
geolim2.4 |
Ref | Expression |
---|---|
geolim2 |
M
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . 3 | |
2 | geolim2.3 | . . . 4 | |
3 | 2 | nn0zd 10992 | . . 3 |
4 | geolim2.4 | . . 3 | |
5 | geolim.1 | . . . . 5 | |
6 | 5 | adantr 465 | . . . 4 |
7 | eluznn0 11180 | . . . . 5 | |
8 | 2, 7 | sylan 471 | . . . 4 |
9 | 6, 8 | expcld 12310 | . . 3 |
10 | oveq2 6304 | . . . . . . . 8 | |
11 | eqid 2457 | . . . . . . . 8 | |
12 | ovex 6324 | . . . . . . . 8 | |
13 | 10, 11, 12 | fvmpt 5956 | . . . . . . 7 |
14 | 8, 13 | syl 16 | . . . . . 6 |
15 | 14, 4 | eqtr4d 2501 | . . . . 5 |
16 | 3, 15 | seqfeq 12132 | . . . 4 |
17 | geolim.2 | . . . . . . 7 | |
18 | oveq2 6304 | . . . . . . . . 9 | |
19 | ovex 6324 | . . . . . . . . 9 | |
20 | 18, 11, 19 | fvmpt 5956 | . . . . . . . 8 |
21 | 20 | adantl 466 | . . . . . . 7 |
22 | 5, 17, 21 | geolim 13679 | . . . . . 6 |
23 | seqex 12109 | . . . . . . 7 | |
24 | ovex 6324 | . . . . . . 7 | |
25 | 23, 24 | breldm 5212 | . . . . . 6 |
26 | 22, 25 | syl 16 | . . . . 5 |
27 | nn0uz 11144 | . . . . . 6 | |
28 | expcl 12184 | . . . . . . . 8 | |
29 | 5, 28 | sylan 471 | . . . . . . 7 |
30 | 21, 29 | eqeltrd 2545 | . . . . . 6 |
31 | 27, 2, 30 | iserex 13479 | . . . . 5 |
32 | 26, 31 | mpbid 210 | . . . 4 |
33 | 16, 32 | eqeltrrd 2546 | . . 3 |
34 | 1, 3, 4, 9, 33 | isumclim2 13573 | . 2 |
35 | 13 | adantl 466 | . . . . . . 7 |
36 | expcl 12184 | . . . . . . . 8 | |
37 | 5, 36 | sylan 471 | . . . . . . 7 |
38 | 27, 1, 2, 35, 37, 26 | isumsplit 13652 | . . . . . 6 |
39 | 0zd 10901 | . . . . . . 7 | |
40 | 27, 39, 35, 37, 22 | isumclim 13572 | . . . . . 6 |
41 | 38, 40 | eqtr3d 2500 | . . . . 5 |
42 | 1re 9616 | . . . . . . . . . . 11 | |
43 | 42 | ltnri 9714 | . . . . . . . . . 10 |
44 | fveq2 5871 | . . . . . . . . . . . 12 | |
45 | abs1 13130 | . . . . . . . . . . . 12 | |
46 | 44, 45 | syl6eq 2514 | . . . . . . . . . . 11 |
47 | 46 | breq1d 4462 | . . . . . . . . . 10 |
48 | 43, 47 | mtbiri 303 | . . . . . . . . 9 |
49 | 48 | necon2ai 2692 | . . . . . . . 8 |
50 | 17, 49 | syl 16 | . . . . . . 7 |
51 | 5, 50, 2 | geoser 13678 | . . . . . 6 |
52 | 51 | oveq1d 6311 | . . . . 5 |
53 | 41, 52 | eqtr3d 2500 | . . . 4 |
54 | 53 | oveq1d 6311 | . . 3 |
55 | 1cnd 9633 | . . . . 5 | |
56 | ax-1cn 9571 | . . . . . 6 | |
57 | 5, 2 | expcld 12310 | . . . . . 6 |
58 | subcl 9842 | . . . . . 6 | |
59 | 56, 57, 58 | sylancr 663 | . . . . 5 |
60 | subcl 9842 | . . . . . 6 | |
61 | 56, 5, 60 | sylancr 663 | . . . . 5 |
62 | 50 | necomd 2728 | . . . . . 6 |
63 | subeq0 9868 | . . . . . . . 8 | |
64 | 56, 5, 63 | sylancr 663 | . . . . . . 7 |
65 | 64 | necon3bid 2715 | . . . . . 6 |
66 | 62, 65 | mpbird 232 | . . . . 5 |
67 | 55, 59, 61, 66 | divsubdird 10384 | . . . 4 |
68 | nncan 9871 | . . . . . 6 | |
69 | 56, 57, 68 | sylancr 663 | . . . . 5 |
70 | 69 | oveq1d 6311 | . . . 4 |
71 | 67, 70 | eqtr3d 2500 | . . 3 |
72 | 59, 61, 66 | divcld 10345 | . . . 4 |
73 | 1, 3, 14, 9, 32 | isumcl 13576 | . . . 4 |
74 | 72, 73 | pncan2d 9956 | . . 3 |
75 | 54, 71, 74 | 3eqtr3rd 2507 | . 2 |
76 | 34, 75 | breqtrd 4476 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 class class class wbr 4452
e. cmpt 4510 dom cdm 5004 ` cfv 5593
(class class class)co 6296 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cmin 9828 cdiv 10231 cn0 10820
cuz 11110
cfz 11701 seq cseq 12107 cexp 12166 cabs 13067 cli 13307 sum_ csu 13508 |
This theorem is referenced by: geoisum1 13688 geoisum1c 13689 rpnnen2lem3 13950 rpnnen2lem9 13956 abelthlem7 22833 log2tlbnd 23276 geomcau 30252 stirlinglem10 31865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-rlim 13312 df-sum 13509 |
Copyright terms: Public domain | W3C validator |