Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprimlem Unicode version

Theorem grothprimlem 9232
 Description: Lemma for grothprim 9233. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
grothprimlem
Distinct variable group:   ,,,,

Proof of Theorem grothprimlem
StepHypRef Expression
1 dfpr2 4044 . . 3
21eleq1i 2534 . 2
3 clabel 2603 . 2
42, 3bitri 249 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  \/wo 368  /\wa 369  A.wal 1393  E.wex 1612  e.wcel 1818  {cab 2442  {cpr 4031 This theorem is referenced by:  grothprim  9233 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032
 Copyright terms: Public domain W3C validator