![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > grothpwex | Unicode version |
Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 9222. Note that ax-pow 4630 is not used by the proof. Use axpweq 4629 to obtain ax-pow 4630. Use pwex 4635 or pwexg 4636 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grothpwex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth5 9223 | . 2 | |
2 | simpl 457 | . . . . . . . 8 | |
3 | 2 | ralimi 2850 | . . . . . . 7 |
4 | pweq 4015 | . . . . . . . . 9 | |
5 | 4 | sseq1d 3530 | . . . . . . . 8 |
6 | 5 | rspccv 3207 | . . . . . . 7 |
7 | 3, 6 | syl 16 | . . . . . 6 |
8 | 7 | anim2i 569 | . . . . 5 |
9 | 8 | 3adant3 1016 | . . . 4 |
10 | pm3.35 587 | . . . 4 | |
11 | vex 3112 | . . . . 5 | |
12 | 11 | ssex 4596 | . . . 4 |
13 | 9, 10, 12 | 3syl 20 | . . 3 |
14 | 13 | exlimiv 1722 | . 2 |
15 | 1, 14 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 /\ w3a 973 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 ~P cpw 4012 class class class wbr 4452
cen 7533 |
This theorem is referenced by: isrnsigaOLD 28112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-groth 9222 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 |
Copyright terms: Public domain | W3C validator |