MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubsub4 Unicode version

Theorem grpsubsub4 14873
Description: Double group subtraction (subsub4 9326 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b
grpsubadd.p
grpsubadd.m
Assertion
Ref Expression
grpsubsub4

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 444 . . . . . 6
2 grpsubadd.b . . . . . . . 8
3 grpsubadd.m . . . . . . . 8
42, 3grpsubcl 14861 . . . . . . 7
543adant3r3 1164 . . . . . 6
6 simpr3 965 . . . . . 6
7 grpsubadd.p . . . . . . 7
82, 7, 3grpnpcan 14872 . . . . . 6
91, 5, 6, 8syl3anc 1184 . . . . 5
109oveq1d 6088 . . . 4
112, 3grpsubcl 14861 . . . . . 6
121, 5, 6, 11syl3anc 1184 . . . . 5
13 simpr2 964 . . . . 5
142, 7grpass 14811 . . . . 5
151, 12, 6, 13, 14syl13anc 1186 . . . 4
162, 7, 3grpnpcan 14872 . . . . 5
17163adant3r3 1164 . . . 4
1810, 15, 173eqtr3d 2475 . . 3
19 simpr1 963 . . . 4
202, 7grpcl 14810 . . . . 5
211, 6, 13, 20syl3anc 1184 . . . 4
222, 7, 3grpsubadd 14868 . . . 4
231, 19, 21, 12, 22syl13anc 1186 . . 3
2418, 23mpbird 224 . 2
2524eqcomd 2440 1
Colors of variables: wff set class
Syntax hints:  ->wi 4  <->wb 177  /\wa 359  /\w3a 936  =wceq 1652  e.wcel 1725  `cfv 5446  (class class class)co 6073   cbs 13461   cplusg 13521   cgrp 14677   csg 14680
This theorem is referenced by:  grppnpcan2  14874  grpnnncan2  14876  sylow3lem1  15253  subgdisj1  15315  pjthlem2  19331  ply1divex  20051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806
  Copyright terms: Public domain W3C validator