![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gruelss | Unicode version |
Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruelss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grutr 9192 | . 2 | |
2 | trss 4554 | . . 3 | |
3 | 2 | imp 429 | . 2 |
4 | 1, 3 | sylan 471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 C_ wss 3475 Tr wtr 4545
cgru 9189 |
This theorem is referenced by: gruss 9195 gruuni 9199 gruel 9202 grur1a 9218 grur1 9219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-tr 4546 df-iota 5556 df-fv 5601 df-ov 6299 df-gru 9190 |
Copyright terms: Public domain | W3C validator |