![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gruima | Unicode version |
Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1000 | . . . 4 | |
2 | funrel 5610 | . . . 4 | |
3 | resres 5291 | . . . . . . 7 | |
4 | resdm 5320 | . . . . . . . 8 | |
5 | 4 | reseq1d 5277 | . . . . . . 7 |
6 | 3, 5 | syl5eqr 2512 | . . . . . 6 |
7 | 6 | rneqd 5235 | . . . . 5 |
8 | df-ima 5017 | . . . . 5 | |
9 | 7, 8 | syl6reqr 2517 | . . . 4 |
10 | 1, 2, 9 | 3syl 20 | . . 3 |
11 | simpl1 999 | . . . 4 | |
12 | simpr 461 | . . . . 5 | |
13 | inss2 3718 | . . . . . 6 | |
14 | 13 | a1i 11 | . . . . 5 |
15 | gruss 9195 | . . . . 5 | |
16 | 11, 12, 14, 15 | syl3anc 1228 | . . . 4 |
17 | funforn 5807 | . . . . . . . 8 | |
18 | fof 5800 | . . . . . . . 8 | |
19 | 17, 18 | sylbi 195 | . . . . . . 7 |
20 | inss1 3717 | . . . . . . 7 | |
21 | fssres 5756 | . . . . . . 7 | |
22 | 19, 20, 21 | sylancl 662 | . . . . . 6 |
23 | ffn 5736 | . . . . . 6 | |
24 | 1, 22, 23 | 3syl 20 | . . . . 5 |
25 | simpl3 1001 | . . . . . 6 | |
26 | 10, 25 | eqsstr3d 3538 | . . . . 5 |
27 | df-f 5597 | . . . . 5 | |
28 | 24, 26, 27 | sylanbrc 664 | . . . 4 |
29 | grurn 9200 | . . . 4 | |
30 | 11, 16, 28, 29 | syl3anc 1228 | . . 3 |
31 | 10, 30 | eqeltrd 2545 | . 2 |
32 | 31 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
i^i cin 3474 C_ wss 3475 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
Rel wrel 5009
Fun wfun 5587
Fn wfn 5588 --> wf 5589 -onto-> wfo 5591 cgru 9189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fo 5599 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-map 7441 df-gru 9190 |
Copyright terms: Public domain | W3C validator |