![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > gruiun | Unicode version |
Description: If ( x ) is a family of
elements of and the index set
is an element of , then the indexed union
is also
an element of , where is a Grothendieck universe.
(Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruiun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . . . 7 | |
2 | 1 | fnmpt 5712 | . . . . . 6 |
3 | 1 | rnmptss 6060 | . . . . . 6 |
4 | df-f 5597 | . . . . . 6 | |
5 | 2, 3, 4 | sylanbrc 664 | . . . . 5 |
6 | gruurn 9197 | . . . . . 6 | |
7 | 6 | 3expia 1198 | . . . . 5 |
8 | 5, 7 | syl5com 30 | . . . 4 |
9 | dfiun3g 5260 | . . . . 5 | |
10 | 9 | eleq1d 2526 | . . . 4 |
11 | 8, 10 | sylibrd 234 | . . 3 |
12 | 11 | com12 31 | . 2 |
13 | 12 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 A. wral 2807
C_ wss 3475 U. cuni 4249 U_ ciun 4330
e. cmpt 4510 ran crn 5005 Fn wfn 5588
--> wf 5589 cgru 9189 |
This theorem is referenced by: gruuni 9199 gruun 9205 gruixp 9208 grur1a 9218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-map 7441 df-gru 9190 |
Copyright terms: Public domain | W3C validator |