![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hartogs | Unicode version |
Description: Given any set, the Hartogs number of the set is the least ordinal not dominated by that set. This theorem proves that there is always an ordinal which satisfies this. (This theorem can be proven trivially using the AC - see theorem ondomon 8959- but this proof works in ZF.) (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
hartogs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 4908 | . . . . . . . . . . . 12 | |
2 | vex 3112 | . . . . . . . . . . . . 13 | |
3 | onelss 4925 | . . . . . . . . . . . . . 14 | |
4 | 3 | imp 429 | . . . . . . . . . . . . 13 |
5 | ssdomg 7581 | . . . . . . . . . . . . 13 | |
6 | 2, 4, 5 | mpsyl 63 | . . . . . . . . . . . 12 |
7 | 1, 6 | jca 532 | . . . . . . . . . . 11 |
8 | domtr 7588 | . . . . . . . . . . . . 13 | |
9 | 8 | anim2i 569 | . . . . . . . . . . . 12 |
10 | 9 | anassrs 648 | . . . . . . . . . . 11 |
11 | 7, 10 | sylan 471 | . . . . . . . . . 10 |
12 | 11 | exp31 604 | . . . . . . . . 9 |
13 | 12 | com12 31 | . . . . . . . 8 |
14 | 13 | impd 431 | . . . . . . 7 |
15 | breq1 4455 | . . . . . . . 8 | |
16 | 15 | elrab 3257 | . . . . . . 7 |
17 | breq1 4455 | . . . . . . . 8 | |
18 | 17 | elrab 3257 | . . . . . . 7 |
19 | 14, 16, 18 | 3imtr4g 270 | . . . . . 6 |
20 | 19 | imp 429 | . . . . 5 |
21 | 20 | gen2 1619 | . . . 4 |
22 | dftr2 4547 | . . . 4 | |
23 | 21, 22 | mpbir 209 | . . 3 |
24 | ssrab2 3584 | . . 3 | |
25 | ordon 6618 | . . 3 | |
26 | trssord 4900 | . . 3 | |
27 | 23, 24, 25, 26 | mp3an 1324 | . 2 |
28 | eqid 2457 | . . . 4 | |
29 | eqid 2457 | . . . 4 | |
30 | 28, 29 | hartogslem2 7989 | . . 3 |
31 | elong 4891 | . . 3 | |
32 | 30, 31 | syl 16 | . 2 |
33 | 27, 32 | mpbiri 233 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 A. wal 1393
= wceq 1395 e. wcel 1818 E. wrex 2808
{ crab 2811 cvv 3109
\ cdif 3472 C_ wss 3475 class class class wbr 4452
{ copab 4509 Tr wtr 4545
cep 4794
cid 4795
We wwe 4842 Ord word 4882 con0 4883 X. cxp 5002 dom cdm 5004
|` cres 5006 ` cfv 5593 cdom 7534 OrdIso coi 7955 |
This theorem is referenced by: card2on 8001 harf 8007 harval 8009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-recs 7061 df-en 7537 df-dom 7538 df-oi 7956 |
Copyright terms: Public domain | W3C validator |