![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hash2pwpr | Unicode version |
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.) |
Ref | Expression |
---|---|
hash2pwpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpr 4245 | . . . . 5 | |
2 | 1 | eleq2i 2535 | . . . 4 |
3 | elun 3644 | . . . 4 | |
4 | 2, 3 | bitri 249 | . . 3 |
5 | elpri 4049 | . . . . 5 | |
6 | elpri 4049 | . . . . 5 | |
7 | 5, 6 | orim12i 516 | . . . 4 |
8 | fveq2 5871 | . . . . . . . 8 | |
9 | hash0 12437 | . . . . . . . . . 10 | |
10 | 9 | eqeq2i 2475 | . . . . . . . . 9 |
11 | eqeq1 2461 | . . . . . . . . . 10 | |
12 | 0ne2 10772 | . . . . . . . . . . 11 | |
13 | eqneqall 2664 | . . . . . . . . . . 11 | |
14 | 12, 13 | mpi 17 | . . . . . . . . . 10 |
15 | 11, 14 | syl6bi 228 | . . . . . . . . 9 |
16 | 10, 15 | sylbi 195 | . . . . . . . 8 |
17 | 8, 16 | syl 16 | . . . . . . 7 |
18 | hashsng 12438 | . . . . . . . . 9 | |
19 | fveq2 5871 | . . . . . . . . . . . 12 | |
20 | 19 | eqcoms 2469 | . . . . . . . . . . 11 |
21 | 20 | eqeq1d 2459 | . . . . . . . . . 10 |
22 | eqeq1 2461 | . . . . . . . . . . 11 | |
23 | 1ne2 10773 | . . . . . . . . . . . 12 | |
24 | eqneqall 2664 | . . . . . . . . . . . 12 | |
25 | 23, 24 | mpi 17 | . . . . . . . . . . 11 |
26 | 22, 25 | syl6bi 228 | . . . . . . . . . 10 |
27 | 21, 26 | syl6bi 228 | . . . . . . . . 9 |
28 | 18, 27 | syl5com 30 | . . . . . . . 8 |
29 | snprc 4093 | . . . . . . . . 9 | |
30 | eqeq2 2472 | . . . . . . . . . 10 | |
31 | 8, 9 | syl6eq 2514 | . . . . . . . . . . . 12 |
32 | 31 | eqeq1d 2459 | . . . . . . . . . . 11 |
33 | 32, 14 | syl6bi 228 | . . . . . . . . . 10 |
34 | 30, 33 | syl6bi 228 | . . . . . . . . 9 |
35 | 29, 34 | sylbi 195 | . . . . . . . 8 |
36 | 28, 35 | pm2.61i 164 | . . . . . . 7 |
37 | 17, 36 | jaoi 379 | . . . . . 6 |
38 | hashsng 12438 | . . . . . . . . 9 | |
39 | fveq2 5871 | . . . . . . . . . . . 12 | |
40 | 39 | eqcoms 2469 | . . . . . . . . . . 11 |
41 | 40 | eqeq1d 2459 | . . . . . . . . . 10 |
42 | 41, 26 | syl6bi 228 | . . . . . . . . 9 |
43 | 38, 42 | syl5com 30 | . . . . . . . 8 |
44 | snprc 4093 | . . . . . . . . 9 | |
45 | eqeq2 2472 | . . . . . . . . . 10 | |
46 | 8 | eqeq1d 2459 | . . . . . . . . . . 11 |
47 | 9 | eqeq1i 2464 | . . . . . . . . . . . 12 |
48 | 47, 14 | sylbi 195 | . . . . . . . . . . 11 |
49 | 46, 48 | syl6bi 228 | . . . . . . . . . 10 |
50 | 45, 49 | syl6bi 228 | . . . . . . . . 9 |
51 | 44, 50 | sylbi 195 | . . . . . . . 8 |
52 | 43, 51 | pm2.61i 164 | . . . . . . 7 |
53 | ax-1 6 | . . . . . . 7 | |
54 | 52, 53 | jaoi 379 | . . . . . 6 |
55 | 37, 54 | jaoi 379 | . . . . 5 |
56 | 55 | com12 31 | . . . 4 |
57 | 7, 56 | syl5 32 | . . 3 |
58 | 4, 57 | syl5bi 217 | . 2 |
59 | 58 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 cvv 3109
u. cun 3473 c0 3784 ~P cpw 4012 { csn 4029
{ cpr 4031 ` cfv 5593 0 cc0 9513
1 c1 9514 2 c2 10610 chash 12405 |
This theorem is referenced by: pr2pwpr 12520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-hash 12406 |
Copyright terms: Public domain | W3C validator |