![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hashf1lem1 | Unicode version |
Description: Lemma for hashf1 12506. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
hashf1lem2.1 | |
hashf1lem2.2 | |
hashf1lem2.3 | |
hashf1lem2.4 | |
hashf1lem1.5 |
Ref | Expression |
---|---|
hashf1lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5786 | . . . . . 6 | |
2 | 1 | adantl 466 | . . . . 5 |
3 | hashf1lem2.2 | . . . . . 6 | |
4 | hashf1lem2.1 | . . . . . . 7 | |
5 | snfi 7616 | . . . . . . 7 | |
6 | unfi 7807 | . . . . . . 7 | |
7 | 4, 5, 6 | sylancl 662 | . . . . . 6 |
8 | 3, 7 | elmapd 7453 | . . . . 5 |
9 | 2, 8 | syl5ibr 221 | . . . 4 |
10 | 9 | abssdv 3573 | . . 3 |
11 | ovex 6324 | . . 3 | |
12 | ssexg 4598 | . . 3 | |
13 | 10, 11, 12 | sylancl 662 | . 2 |
14 | difexg 4600 | . . 3 | |
15 | 3, 14 | syl 16 | . 2 |
16 | vex 3112 | . . . 4 | |
17 | reseq1 5272 | . . . . . 6 | |
18 | 17 | eqeq1d 2459 | . . . . 5 |
19 | f1eq1 5781 | . . . . 5 | |
20 | 18, 19 | anbi12d 710 | . . . 4 |
21 | 16, 20 | elab 3246 | . . 3 |
22 | f1f 5786 | . . . . . . 7 | |
23 | 22 | ad2antll 728 | . . . . . 6 |
24 | ssun2 3667 | . . . . . . 7 | |
25 | vex 3112 | . . . . . . . 8 | |
26 | 25 | snss 4154 | . . . . . . 7 |
27 | 24, 26 | mpbir 209 | . . . . . 6 |
28 | ffvelrn 6029 | . . . . . 6 | |
29 | 23, 27, 28 | sylancl 662 | . . . . 5 |
30 | hashf1lem2.3 | . . . . . . 7 | |
31 | 30 | adantr 465 | . . . . . 6 |
32 | df-ima 5017 | . . . . . . . . 9 | |
33 | simprl 756 | . . . . . . . . . 10 | |
34 | 33 | rneqd 5235 | . . . . . . . . 9 |
35 | 32, 34 | syl5eq 2510 | . . . . . . . 8 |
36 | 35 | eleq2d 2527 | . . . . . . 7 |
37 | simprr 757 | . . . . . . . 8 | |
38 | 27 | a1i 11 | . . . . . . . 8 |
39 | ssun1 3666 | . . . . . . . . 9 | |
40 | 39 | a1i 11 | . . . . . . . 8 |
41 | f1elima 6171 | . . . . . . . 8 | |
42 | 37, 38, 40, 41 | syl3anc 1228 | . . . . . . 7 |
43 | 36, 42 | bitr3d 255 | . . . . . 6 |
44 | 31, 43 | mtbird 301 | . . . . 5 |
45 | 29, 44 | eldifd 3486 | . . . 4 |
46 | 45 | ex 434 | . . 3 |
47 | 21, 46 | syl5bi 217 | . 2 |
48 | hashf1lem1.5 | . . . . . . 7 | |
49 | f1f 5786 | . . . . . . 7 | |
50 | 48, 49 | syl 16 | . . . . . 6 |
51 | 50 | adantr 465 | . . . . 5 |
52 | vex 3112 | . . . . . . . 8 | |
53 | 25, 52 | f1osn 5858 | . . . . . . 7 |
54 | f1of 5821 | . . . . . . 7 | |
55 | 53, 54 | ax-mp 5 | . . . . . 6 |
56 | eldifi 3625 | . . . . . . . 8 | |
57 | 56 | adantl 466 | . . . . . . 7 |
58 | 57 | snssd 4175 | . . . . . 6 |
59 | fss 5744 | . . . . . 6 | |
60 | 55, 58, 59 | sylancr 663 | . . . . 5 |
61 | res0 5283 | . . . . . . 7 | |
62 | res0 5283 | . . . . . . 7 | |
63 | 61, 62 | eqtr4i 2489 | . . . . . 6 |
64 | disjsn 4090 | . . . . . . . . 9 | |
65 | 30, 64 | sylibr 212 | . . . . . . . 8 |
66 | 65 | adantr 465 | . . . . . . 7 |
67 | 66 | reseq2d 5278 | . . . . . 6 |
68 | 66 | reseq2d 5278 | . . . . . 6 |
69 | 63, 67, 68 | 3eqtr4a 2524 | . . . . 5 |
70 | fresaunres1 5763 | . . . . 5 | |
71 | 51, 60, 69, 70 | syl3anc 1228 | . . . 4 |
72 | f1f1orn 5832 | . . . . . . . . 9 | |
73 | 48, 72 | syl 16 | . . . . . . . 8 |
74 | 73 | adantr 465 | . . . . . . 7 |
75 | 53 | a1i 11 | . . . . . . 7 |
76 | eldifn 3626 | . . . . . . . . 9 | |
77 | 76 | adantl 466 | . . . . . . . 8 |
78 | disjsn 4090 | . . . . . . . 8 | |
79 | 77, 78 | sylibr 212 | . . . . . . 7 |
80 | f1oun 5840 | . . . . . . 7 | |
81 | 74, 75, 66, 79, 80 | syl22anc 1229 | . . . . . 6 |
82 | f1of1 5820 | . . . . . 6 | |
83 | 81, 82 | syl 16 | . . . . 5 |
84 | frn 5742 | . . . . . . 7 | |
85 | 51, 84 | syl 16 | . . . . . 6 |
86 | 85, 58 | unssd 3679 | . . . . 5 |
87 | f1ss 5791 | . . . . 5 | |
88 | 83, 86, 87 | syl2anc 661 | . . . 4 |
89 | fex 6145 | . . . . . . . 8 | |
90 | 50, 4, 89 | syl2anc 661 | . . . . . . 7 |
91 | 90 | adantr 465 | . . . . . 6 |
92 | snex 4693 | . . . . . 6 | |
93 | unexg 6601 | . . . . . 6 | |
94 | 91, 92, 93 | sylancl 662 | . . . . 5 |
95 | reseq1 5272 | . . . . . . . 8 | |
96 | 95 | eqeq1d 2459 | . . . . . . 7 |
97 | f1eq1 5781 | . . . . . . 7 | |
98 | 96, 97 | anbi12d 710 | . . . . . 6 |
99 | 98 | elabg 3247 | . . . . 5 |
100 | 94, 99 | syl 16 | . . . 4 |
101 | 71, 88, 100 | mpbir2and 922 | . . 3 |
102 | 101 | ex 434 | . 2 |
103 | 21 | anbi1i 695 | . . 3 |
104 | simprlr 764 | . . . . . . 7 | |
105 | f1fn 5787 | . . . . . . 7 | |
106 | 104, 105 | syl 16 | . . . . . 6 |
107 | 81 | adantrl 715 | . . . . . . 7 |
108 | f1ofn 5822 | . . . . . . 7 | |
109 | 107, 108 | syl 16 | . . . . . 6 |
110 | eqfnfv 5981 | . . . . . 6 | |
111 | 106, 109, 110 | syl2anc 661 | . . . . 5 |
112 | fvres 5885 | . . . . . . . . . . 11 | |
113 | 112 | eqcomd 2465 | . . . . . . . . . 10 |
114 | simprll 763 | . . . . . . . . . . 11 | |
115 | 114 | fveq1d 5873 | . . . . . . . . . 10 |
116 | 113, 115 | sylan9eqr 2520 | . . . . . . . . 9 |
117 | 48 | ad2antrr 725 | . . . . . . . . . . 11 |
118 | f1fn 5787 | . . . . . . . . . . 11 | |
119 | 117, 118 | syl 16 | . . . . . . . . . 10 |
120 | 25, 52 | fnsn 5646 | . . . . . . . . . . 11 |
121 | 120 | a1i 11 | . . . . . . . . . 10 |
122 | 65 | ad2antrr 725 | . . . . . . . . . 10 |
123 | simpr 461 | . . . . . . . . . 10 | |
124 | fvun1 5944 | . . . . . . . . . 10 | |
125 | 119, 121, 122, 123, 124 | syl112anc 1232 | . . . . . . . . 9 |
126 | 116, 125 | eqtr4d 2501 | . . . . . . . 8 |
127 | 126 | ralrimiva 2871 | . . . . . . 7 |
128 | 127 | biantrurd 508 | . . . . . 6 |
129 | ralunb 3684 | . . . . . 6 | |
130 | 128, 129 | syl6bbr 263 | . . . . 5 |
131 | 25 | a1i 11 | . . . . . . . 8 |
132 | 52 | a1i 11 | . . . . . . . 8 |
133 | fdm 5740 | . . . . . . . . . . . 12 | |
134 | 50, 133 | syl 16 | . . . . . . . . . . 11 |
135 | 134 | eleq2d 2527 | . . . . . . . . . 10 |
136 | 30, 135 | mtbird 301 | . . . . . . . . 9 |
137 | 136 | adantr 465 | . . . . . . . 8 |
138 | fsnunfv 6111 | . . . . . . . 8 | |
139 | 131, 132, 137, 138 | syl3anc 1228 | . . . . . . 7 |
140 | 139 | eqeq2d 2471 | . . . . . 6 |
141 | fveq2 5871 | . . . . . . . 8 | |
142 | fveq2 5871 | . . . . . . . 8 | |
143 | 141, 142 | eqeq12d 2479 | . . . . . . 7 |
144 | 25, 143 | ralsn 4068 | . . . . . 6 |
145 | eqcom 2466 | . . . . . 6 | |
146 | 140, 144, 145 | 3bitr4g 288 | . . . . 5 |
147 | 111, 130, 146 | 3bitr2d 281 | . . . 4 |
148 | 147 | ex 434 | . . 3 |
149 | 103, 148 | syl5bi 217 | . 2 |
150 | 13, 15, 47, 102, 149 | en3d 7572 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 A. wral 2807
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
Fn wfn 5588 --> wf 5589 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
cmap 7439
cen 7533 cfn 7536 1 c1 9514 caddc 9516 cle 9650 chash 12405 |
This theorem is referenced by: hashf1lem2 12505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-fin 7540 |
Copyright terms: Public domain | W3C validator |