![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hashge2el2dif | Unicode version |
Description: A set with size at least 2 has at least 2 different elements. (Contributed by AV, 18-Mar-2019.) |
Ref | Expression |
---|---|
hashge2el2dif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . . . 7 | |
2 | hashsng 12438 | . . . . . . 7 | |
3 | 1, 2 | sylan9eqr 2520 | . . . . . 6 |
4 | 3 | ralimiaa 2849 | . . . . 5 |
5 | 0re 9617 | . . . . . . . . . . . . . . . 16 | |
6 | 1re 9616 | . . . . . . . . . . . . . . . 16 | |
7 | 5, 6 | readdcli 9630 | . . . . . . . . . . . . . . 15 |
8 | 7 | a1i 11 | . . . . . . . . . . . . . 14 |
9 | 2re 10630 | . . . . . . . . . . . . . . 15 | |
10 | 9 | a1i 11 | . . . . . . . . . . . . . 14 |
11 | hashcl 12428 | . . . . . . . . . . . . . . . 16 | |
12 | 11 | nn0red 10878 | . . . . . . . . . . . . . . 15 |
13 | 12 | adantr 465 | . . . . . . . . . . . . . 14 |
14 | 8, 10, 13 | 3jca 1176 | . . . . . . . . . . . . 13 |
15 | 0p1e1 10672 | . . . . . . . . . . . . . . . . 17 | |
16 | 1lt2 10727 | . . . . . . . . . . . . . . . . 17 | |
17 | 15, 16 | eqbrtri 4471 | . . . . . . . . . . . . . . . 16 |
18 | 17 | jctl 541 | . . . . . . . . . . . . . . 15 |
19 | 18 | adantl 466 | . . . . . . . . . . . . . 14 |
20 | 19 | adantl 466 | . . . . . . . . . . . . 13 |
21 | ltleletr 9698 | . . . . . . . . . . . . 13 | |
22 | 14, 20, 21 | sylc 60 | . . . . . . . . . . . 12 |
23 | 11 | nn0zd 10992 | . . . . . . . . . . . . . . 15 |
24 | 0z 10900 | . . . . . . . . . . . . . . 15 | |
25 | 23, 24 | jctil 537 | . . . . . . . . . . . . . 14 |
26 | 25 | adantr 465 | . . . . . . . . . . . . 13 |
27 | zltp1le 10938 | . . . . . . . . . . . . 13 | |
28 | 26, 27 | syl 16 | . . . . . . . . . . . 12 |
29 | 22, 28 | mpbird 232 | . . . . . . . . . . 11 |
30 | 0ltpnf 11361 | . . . . . . . . . . . 12 | |
31 | simpl 457 | . . . . . . . . . . . . . . 15 | |
32 | 31 | anim2i 569 | . . . . . . . . . . . . . 14 |
33 | 32 | ancomd 451 | . . . . . . . . . . . . 13 |
34 | hashinf 12410 | . . . . . . . . . . . . 13 | |
35 | 33, 34 | syl 16 | . . . . . . . . . . . 12 |
36 | 30, 35 | syl5breqr 4488 | . . . . . . . . . . 11 |
37 | 29, 36 | pm2.61ian 790 | . . . . . . . . . 10 |
38 | hashgt0n0 12435 | . . . . . . . . . 10 | |
39 | 37, 38 | syldan 470 | . . . . . . . . 9 |
40 | rspn0 3797 | . . . . . . . . 9 | |
41 | 39, 40 | syl 16 | . . . . . . . 8 |
42 | 41 | imp 429 | . . . . . . 7 |
43 | breq2 4456 | . . . . . . . . . . 11 | |
44 | 6, 9 | ltnlei 9726 | . . . . . . . . . . . . 13 |
45 | pm2.21 108 | . . . . . . . . . . . . 13 | |
46 | 44, 45 | sylbi 195 | . . . . . . . . . . . 12 |
47 | 16, 46 | ax-mp 5 | . . . . . . . . . . 11 |
48 | 43, 47 | syl6bi 228 | . . . . . . . . . 10 |
49 | 48 | com12 31 | . . . . . . . . 9 |
50 | 49 | adantl 466 | . . . . . . . 8 |
51 | 50 | adantr 465 | . . . . . . 7 |
52 | 42, 51 | mpd 15 | . . . . . 6 |
53 | 52 | expcom 435 | . . . . 5 |
54 | 4, 53 | syl 16 | . . . 4 |
55 | ax-1 6 | . . . 4 | |
56 | 54, 55 | pm2.61i 164 | . . 3 |
57 | eqsn 4191 | . . . . . 6 | |
58 | 39, 57 | syl 16 | . . . . 5 |
59 | equcom 1794 | . . . . . . 7 | |
60 | 59 | a1i 11 | . . . . . 6 |
61 | 60 | ralbidv 2896 | . . . . 5 |
62 | 58, 61 | bitrd 253 | . . . 4 |
63 | 62 | ralbidv 2896 | . . 3 |
64 | 56, 63 | mtbid 300 | . 2 |
65 | df-ne 2654 | . . . . . 6 | |
66 | 65 | rexbii 2959 | . . . . 5 |
67 | rexnal 2905 | . . . . 5 | |
68 | 66, 67 | bitri 249 | . . . 4 |
69 | 68 | rexbii 2959 | . . 3 |
70 | rexnal 2905 | . . 3 | |
71 | 69, 70 | bitri 249 | . 2 |
72 | 64, 71 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 c0 3784 { csn 4029 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cfn 7536 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cpnf 9646 clt 9649 cle 9650 2 c2 10610 cz 10889 chash 12405 |
This theorem is referenced by: tglowdim1 23891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-hash 12406 |
Copyright terms: Public domain | W3C validator |