![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hashkf | Unicode version |
Description: The finite part of the size function maps all finite sets to their cardinality, as members of . (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
hashgval.1 | |
hashkf.2 |
Ref | Expression |
---|---|
hashkf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 7119 | . . . . . . 7 | |
2 | hashgval.1 | . . . . . . . 8 | |
3 | 2 | fneq1i 5680 | . . . . . . 7 |
4 | 1, 3 | mpbir 209 | . . . . . 6 |
5 | fnfun 5683 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | cardf2 8345 | . . . . . 6 | |
8 | ffun 5738 | . . . . . 6 | |
9 | 7, 8 | ax-mp 5 | . . . . 5 |
10 | funco 5631 | . . . . 5 | |
11 | 6, 9, 10 | mp2an 672 | . . . 4 |
12 | dmco 5520 | . . . . 5 | |
13 | fndm 5685 | . . . . . . 7 | |
14 | 4, 13 | ax-mp 5 | . . . . . 6 |
15 | 14 | imaeq2i 5340 | . . . . 5 |
16 | funfn 5622 | . . . . . . . . 9 | |
17 | 9, 16 | mpbi 208 | . . . . . . . 8 |
18 | elpreima 6007 | . . . . . . . 8 | |
19 | 17, 18 | ax-mp 5 | . . . . . . 7 |
20 | id 22 | . . . . . . . . . 10 | |
21 | cardid2 8355 | . . . . . . . . . . 11 | |
22 | 21 | ensymd 7586 | . . . . . . . . . 10 |
23 | breq2 4456 | . . . . . . . . . . 11 | |
24 | 23 | rspcev 3210 | . . . . . . . . . 10 |
25 | 20, 22, 24 | syl2anr 478 | . . . . . . . . 9 |
26 | isfi 7559 | . . . . . . . . 9 | |
27 | 25, 26 | sylibr 212 | . . . . . . . 8 |
28 | finnum 8350 | . . . . . . . . 9 | |
29 | ficardom 8363 | . . . . . . . . 9 | |
30 | 28, 29 | jca 532 | . . . . . . . 8 |
31 | 27, 30 | impbii 188 | . . . . . . 7 |
32 | 19, 31 | bitri 249 | . . . . . 6 |
33 | 32 | eqriv 2453 | . . . . 5 |
34 | 12, 15, 33 | 3eqtri 2490 | . . . 4 |
35 | df-fn 5596 | . . . 4 | |
36 | 11, 34, 35 | mpbir2an 920 | . . 3 |
37 | hashkf.2 | . . . 4 | |
38 | 37 | fneq1i 5680 | . . 3 |
39 | 36, 38 | mpbir 209 | . 2 |
40 | 37 | fveq1i 5872 | . . . . 5 |
41 | fvco 5949 | . . . . . 6 | |
42 | 9, 28, 41 | sylancr 663 | . . . . 5 |
43 | 40, 42 | syl5eq 2510 | . . . 4 |
44 | 2 | hashgf1o 12081 | . . . . . . 7 |
45 | f1of 5821 | . . . . . . 7 | |
46 | 44, 45 | ax-mp 5 | . . . . . 6 |
47 | 46 | ffvelrni 6030 | . . . . 5 |
48 | 29, 47 | syl 16 | . . . 4 |
49 | 43, 48 | eqeltrd 2545 | . . 3 |
50 | 49 | rgen 2817 | . 2 |
51 | ffnfv 6057 | . 2 | |
52 | 39, 50, 51 | mpbir2an 920 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
A. wral 2807 E. wrex 2808 cvv 3109
class class class wbr 4452 e. cmpt 4510
con0 4883 `' ccnv 5003 dom cdm 5004
|` cres 5006 " cima 5007 o. ccom 5008
Fun wfun 5587
Fn wfn 5588 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
com 6700
rec crdg 7094
cen 7533 cfn 7536 ccrd 8337 0 cc0 9513 1 c1 9514
caddc 9516 cn0 10820 |
This theorem is referenced by: hashgval 12408 hashinf 12410 hashf 12412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |