![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hashunx | Unicode version |
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 12450. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
Ref | Expression |
---|---|
hashunx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashun 12450 | . . . . . 6 | |
2 | 1 | 3expa 1196 | . . . . 5 |
3 | hashcl 12428 | . . . . . . . . . 10 | |
4 | 3 | nn0red 10878 | . . . . . . . . 9 |
5 | hashcl 12428 | . . . . . . . . . 10 | |
6 | 5 | nn0red 10878 | . . . . . . . . 9 |
7 | 4, 6 | anim12i 566 | . . . . . . . 8 |
8 | 7 | adantr 465 | . . . . . . 7 |
9 | rexadd 11460 | . . . . . . 7 | |
10 | 8, 9 | syl 16 | . . . . . 6 |
11 | 10 | eqcomd 2465 | . . . . 5 |
12 | 2, 11 | eqtrd 2498 | . . . 4 |
13 | 12 | expcom 435 | . . 3 |
14 | 13 | 3ad2ant3 1019 | . 2 |
15 | unexg 6601 | . . . . . 6 | |
16 | unfir 7808 | . . . . . . 7 | |
17 | 16 | con3i 135 | . . . . . 6 |
18 | hashinf 12410 | . . . . . 6 | |
19 | 15, 17, 18 | syl2anr 478 | . . . . 5 |
20 | ianor 488 | . . . . . . 7 | |
21 | simprl 756 | . . . . . . . . . . 11 | |
22 | simprr 757 | . . . . . . . . . . 11 | |
23 | hashnfinnn0 12432 | . . . . . . . . . . . . . 14 | |
24 | 23 | ex 434 | . . . . . . . . . . . . 13 |
25 | 24 | adantr 465 | . . . . . . . . . . . 12 |
26 | 25 | impcom 430 | . . . . . . . . . . 11 |
27 | hashinfxadd 12453 | . . . . . . . . . . 11 | |
28 | 21, 22, 26, 27 | syl3anc 1228 | . . . . . . . . . 10 |
29 | 28 | eqcomd 2465 | . . . . . . . . 9 |
30 | 29 | ex 434 | . . . . . . . 8 |
31 | hashxrcl 12429 | . . . . . . . . . . . . . 14 | |
32 | hashxrcl 12429 | . . . . . . . . . . . . . 14 | |
33 | 31, 32 | anim12i 566 | . . . . . . . . . . . . 13 |
34 | 33 | adantl 466 | . . . . . . . . . . . 12 |
35 | xaddcom 11466 | . . . . . . . . . . . 12 | |
36 | 34, 35 | syl 16 | . . . . . . . . . . 11 |
37 | simprr 757 | . . . . . . . . . . . 12 | |
38 | simprl 756 | . . . . . . . . . . . 12 | |
39 | hashnfinnn0 12432 | . . . . . . . . . . . . . . 15 | |
40 | 39 | ex 434 | . . . . . . . . . . . . . 14 |
41 | 40 | adantl 466 | . . . . . . . . . . . . 13 |
42 | 41 | impcom 430 | . . . . . . . . . . . 12 |
43 | hashinfxadd 12453 | . . . . . . . . . . . 12 | |
44 | 37, 38, 42, 43 | syl3anc 1228 | . . . . . . . . . . 11 |
45 | 36, 44 | eqtrd 2498 | . . . . . . . . . 10 |
46 | 45 | eqcomd 2465 | . . . . . . . . 9 |
47 | 46 | ex 434 | . . . . . . . 8 |
48 | 30, 47 | jaoi 379 | . . . . . . 7 |
49 | 20, 48 | sylbi 195 | . . . . . 6 |
50 | 49 | imp 429 | . . . . 5 |
51 | 19, 50 | eqtrd 2498 | . . . 4 |
52 | 51 | expcom 435 | . . 3 |
53 | 52 | 3adant3 1016 | . 2 |
54 | 14, 53 | pm2.61d 158 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 e/ wnel 2653
cvv 3109
u. cun 3473 i^i cin 3474 c0 3784 ` cfv 5593 (class class class)co 6296
cfn 7536 cr 9512 caddc 9516 cpnf 9646 cxr 9648
cn0 10820
cxad 11345
chash 12405 |
This theorem is referenced by: vdgrun 24901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-xadd 11348 df-hash 12406 |
Copyright terms: Public domain | W3C validator |