MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hb3an Unicode version

Theorem hb3an 1932
Description: If is not free in , , and , it is not free in . (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
hb.1
hb.2
hb.3
Assertion
Ref Expression
hb3an

Proof of Theorem hb3an
StepHypRef Expression
1 hb.1 . . . 4
21nfi 1623 . . 3
3 hb.2 . . . 4
43nfi 1623 . . 3
5 hb.3 . . . 4
65nfi 1623 . . 3
72, 4, 6nf3an 1930 . 2
87nfri 1874 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\w3a 973  A.wal 1393
This theorem is referenced by:  bnj982  33837  bnj1276  33873  bnj1350  33884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator