MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab1 Unicode version

Theorem hbab1 2445
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
hbab1
Distinct variable group:   ,

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2443 . 2
2 hbs1 2180 . 2
31, 2hbxfrbi 1643 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  [wsb 1739  e.wcel 1818  {cab 2442
This theorem is referenced by:  nfsab1  2446  abeq2  2581  abbi  2588  abeq2f  27398  bnj1317  33880  bnj1318  34081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443
  Copyright terms: Public domain W3C validator