MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbal Unicode version

Theorem hbal 1844
Description: If is not free in , it is not free in . (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
hbal.1
Assertion
Ref Expression
hbal

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3
21alimi 1633 . 2
3 ax-11 1842 . 2
42, 3syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  hbex  1946  nfal  1947  hbral  2841  wl-nfalv  29977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1618  ax-4 1631  ax-11 1842
  Copyright terms: Public domain W3C validator