MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbim Unicode version

Theorem hbim 1860
Description: If is not free in and , it is not free in . (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 3-Mar-2008.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypotheses
Ref Expression
hbim.1
hbim.2
Assertion
Ref Expression
hbim

Proof of Theorem hbim
StepHypRef Expression
1 hbim.1 . 2
2 hbim.2 . . 3
32a1i 11 . 2
41, 3hbim1 1856 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1368
This theorem is referenced by:  axi5r  2424  cleqhOLD  2570  hbral  2814  bj-cleqh  33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794
This theorem depends on definitions:  df-bi 185  df-ex 1588  df-nf 1591
  Copyright terms: Public domain W3C validator