MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbim1 Unicode version

Theorem hbim1 1918
Description: A closed form of hbim 1922. (Contributed by NM, 2-Jun-1993.)
Hypotheses
Ref Expression
hbim1.1
hbim1.2
Assertion
Ref Expression
hbim1

Proof of Theorem hbim1
StepHypRef Expression
1 hbim1.2 . . 3
21a2i 13 . 2
3 hbim1.1 . . 3
4319.21h 1907 . 2
52, 4sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  nfim1  1919  hbim  1922  axc14  2113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator