MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae Unicode version

Theorem hbnae 2057
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 13-May-1993.)
Assertion
Ref Expression
hbnae

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 2055 . 2
21hbn 1895 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  hbnaes  2059  eujustALT  2285  ax6e2nd  33331  ax6e2ndVD  33708  ax6e2ndeqVD  33709  ax6e2ndALT  33730  ax6e2ndeqALT  33731  bj-hbnaeb  34393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator