MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbra1 Unicode version

Theorem hbra1 2839
Description: is not free in . (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.)
Assertion
Ref Expression
hbra1

Proof of Theorem hbra1
StepHypRef Expression
1 nfra1 2838 . 2
21nfri 1874 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  A.wral 2807
This theorem is referenced by:  mpt2bi123f  30571  hbra2VD  33660  tratrbVD  33661  ssralv2VD  33666  bnj1095  33840  bnj1309  34078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617  df-ral 2812
  Copyright terms: Public domain W3C validator