MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb Unicode version

Theorem hbsb 2185
Description: If is not free in , it is not free in when and are distinct. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
hbsb.1
Assertion
Ref Expression
hbsb
Distinct variable group:   ,

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4
21nfi 1623 . . 3
32nfsb 2184 . 2
43nfri 1874 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  [wsb 1739
This theorem is referenced by:  hbab  2447  hblem  2580  bj-hblem  34425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator