Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hftr Unicode version

Theorem hftr 26953
Description: The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hftr

Proof of Theorem hftr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4397 . 2
2 hfelhf 26952 . . 3
32ax-gen 1562 . 2
41, 3mpgbir 1566 1
Colors of variables: wff set class
Syntax hints:  ->wi 4  /\wa 360  A.wal 1556  e.wcel 1724  Trwtr 4395   chf 26943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1562  ax-4 1573  ax-5 1636  ax-6 1677  ax-7 1697  ax-8 1726  ax-9 1728  ax-10 1743  ax-11 1748  ax-12 1760  ax-13 1947  ax-ext 2462  ax-rep 4413  ax-sep 4423  ax-nul 4431  ax-pow 4477  ax-pr 4538  ax-un 6338  ax-reg 7672  ax-inf2 7708
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1337  df-ex 1558  df-nf 1561  df-sb 1669  df-eu 2309  df-mo 2310  df-clab 2468  df-cleq 2474  df-clel 2477  df-nfc 2606  df-ne 2646  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3008  df-sbc 3213  df-csb 3314  df-dif 3356  df-un 3358  df-in 3360  df-ss 3367  df-pss 3369  df-nul 3661  df-if 3813  df-pw 3880  df-sn 3900  df-pr 3901  df-tp 3902  df-op 3903  df-uni 4102  df-int 4139  df-iun 4183  df-br 4303  df-opab 4361  df-mpt 4362  df-tr 4396  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4850  df-rel 4851  df-cnv 4852  df-co 4853  df-dm 4854  df-rn 4855  df-res 4856  df-ima 4857  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-om 6442  df-recs 6745  df-rdg 6780  df-er 7017  df-en 7222  df-dom 7223  df-sdom 7224  df-r1 7802  df-rank 7803  df-hf 26944
  Copyright terms: Public domain W3C validator