![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hsmexlem1 | Unicode version |
Description: Lemma for hsmex 8833. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
hsmexlem.o |
Ref | Expression |
---|---|
hsmexlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hsmexlem.o | . . . 4 | |
2 | 1 | oicl 7975 | . . 3 |
3 | relwdom 8013 | . . . . . . . 8 | |
4 | 3 | brrelexi 5045 | . . . . . . 7 |
5 | 4 | adantl 466 | . . . . . 6 |
6 | uniexg 6597 | . . . . . 6 | |
7 | sucexg 6645 | . . . . . 6 | |
8 | 5, 6, 7 | 3syl 20 | . . . . 5 |
9 | 1 | oif 7976 | . . . . . . 7 |
10 | onsucuni 6663 | . . . . . . . 8 | |
11 | 10 | adantr 465 | . . . . . . 7 |
12 | fss 5744 | . . . . . . 7 | |
13 | 9, 11, 12 | sylancr 663 | . . . . . 6 |
14 | 1 | oismo 7986 | . . . . . . . 8 |
15 | 14 | adantr 465 | . . . . . . 7 |
16 | 15 | simpld 459 | . . . . . 6 |
17 | ssorduni 6621 | . . . . . . . 8 | |
18 | 17 | adantr 465 | . . . . . . 7 |
19 | ordsuc 6649 | . . . . . . 7 | |
20 | 18, 19 | sylib 196 | . . . . . 6 |
21 | smorndom 7058 | . . . . . 6 | |
22 | 13, 16, 20, 21 | syl3anc 1228 | . . . . 5 |
23 | 8, 22 | ssexd 4599 | . . . 4 |
24 | elong 4891 | . . . 4 | |
25 | 23, 24 | syl 16 | . . 3 |
26 | 2, 25 | mpbiri 233 | . 2 |
27 | canth2g 7691 | . . . 4 | |
28 | sdomdom 7563 | . . . 4 | |
29 | 23, 27, 28 | 3syl 20 | . . 3 |
30 | simpl 457 | . . . . . . . . . . 11 | |
31 | epweon 6619 | . . . . . . . . . . 11 | |
32 | wess 4871 | . . . . . . . . . . 11 | |
33 | 30, 31, 32 | mpisyl 18 | . . . . . . . . . 10 |
34 | epse 4867 | . . . . . . . . . 10 | |
35 | 1 | oiiso2 7977 | . . . . . . . . . 10 |
36 | 33, 34, 35 | sylancl 662 | . . . . . . . . 9 |
37 | isof1o 6221 | . . . . . . . . 9 | |
38 | 36, 37 | syl 16 | . . . . . . . 8 |
39 | 15 | simprd 463 | . . . . . . . . 9 |
40 | f1oeq3 5814 | . . . . . . . . 9 | |
41 | 39, 40 | syl 16 | . . . . . . . 8 |
42 | 38, 41 | mpbid 210 | . . . . . . 7 |
43 | f1oen2g 7552 | . . . . . . 7 | |
44 | 26, 5, 42, 43 | syl3anc 1228 | . . . . . 6 |
45 | endom 7562 | . . . . . 6 | |
46 | domwdom 8021 | . . . . . 6 | |
47 | 44, 45, 46 | 3syl 20 | . . . . 5 |
48 | wdomtr 8022 | . . . . 5 | |
49 | 47, 48 | sylancom 667 | . . . 4 |
50 | wdompwdom 8025 | . . . 4 | |
51 | 49, 50 | syl 16 | . . 3 |
52 | domtr 7588 | . . 3 | |
53 | 29, 51, 52 | syl2anc 661 | . 2 |
54 | elharval 8010 | . 2 | |
55 | 26, 53, 54 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
C_ wss 3475 ~P cpw 4012 U. cuni 4249
class class class wbr 4452 cep 4794
Se wse 4841 We wwe 4842 Ord word 4882
con0 4883 suc csuc 4885 dom cdm 5004
ran crn 5005 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594
Smo wsmo 7035
cen 7533 cdom 7534 csdm 7535 OrdIso coi 7955 char 8003 cwdom 8004 |
This theorem is referenced by: hsmexlem2 8828 hsmexlem4 8830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-smo 7036 df-recs 7061 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-oi 7956 df-har 8005 df-wdom 8006 |
Copyright terms: Public domain | W3C validator |