![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hsmexlem2 | Unicode version |
Description: Lemma for hsmex 8833. Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb 8971 but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
hsmexlem.f | |
hsmexlem.g |
Ref | Expression |
---|---|
hsmexlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4021 | . . . . . 6 | |
2 | 1 | adantr 465 | . . . . 5 |
3 | 2 | ralimi 2850 | . . . 4 |
4 | iunss 4371 | . . . 4 | |
5 | 3, 4 | sylibr 212 | . . 3 |
6 | 5 | 3ad2ant3 1019 | . 2 |
7 | xpexg 6602 | . . . 4 | |
8 | 7 | 3adant3 1016 | . . 3 |
9 | nfv 1707 | . . . . . . . . 9 | |
10 | nfra1 2838 | . . . . . . . . 9 | |
11 | 9, 10 | nfan 1928 | . . . . . . . 8 |
12 | rsp 2823 | . . . . . . . . 9 | |
13 | onelss 4925 | . . . . . . . . . . . . . 14 | |
14 | 13 | imp 429 | . . . . . . . . . . . . 13 |
15 | 14 | adantrl 715 | . . . . . . . . . . . 12 |
16 | 15 | 3adant3 1016 | . . . . . . . . . . 11 |
17 | hsmexlem.f | . . . . . . . . . . . . . . . . . . 19 | |
18 | 17 | oismo 7986 | . . . . . . . . . . . . . . . . . 18 |
19 | 1, 18 | syl 16 | . . . . . . . . . . . . . . . . 17 |
20 | 19 | ad2antrl 727 | . . . . . . . . . . . . . . . 16 |
21 | 20 | simprd 463 | . . . . . . . . . . . . . . 15 |
22 | 17 | oif 7976 | . . . . . . . . . . . . . . 15 |
23 | 21, 22 | jctil 537 | . . . . . . . . . . . . . 14 |
24 | dffo2 5804 | . . . . . . . . . . . . . 14 | |
25 | 23, 24 | sylibr 212 | . . . . . . . . . . . . 13 |
26 | dffo3 6046 | . . . . . . . . . . . . . 14 | |
27 | 26 | simprbi 464 | . . . . . . . . . . . . 13 |
28 | rsp 2823 | . . . . . . . . . . . . 13 | |
29 | 25, 27, 28 | 3syl 20 | . . . . . . . . . . . 12 |
30 | 29 | 3impia 1193 | . . . . . . . . . . 11 |
31 | ssrexv 3564 | . . . . . . . . . . 11 | |
32 | 16, 30, 31 | sylc 60 | . . . . . . . . . 10 |
33 | 32 | 3exp 1195 | . . . . . . . . 9 |
34 | 12, 33 | sylan9r 658 | . . . . . . . 8 |
35 | 11, 34 | reximdai 2926 | . . . . . . 7 |
36 | 35 | 3adant1 1014 | . . . . . 6 |
37 | nfv 1707 | . . . . . . 7 | |
38 | nfcv 2619 | . . . . . . . 8 | |
39 | nfcv 2619 | . . . . . . . . . . 11 | |
40 | nfcsb1v 3450 | . . . . . . . . . . 11 | |
41 | 39, 40 | nfoi 7960 | . . . . . . . . . 10 |
42 | nfcv 2619 | . . . . . . . . . 10 | |
43 | 41, 42 | nffv 5878 | . . . . . . . . 9 |
44 | 43 | nfeq2 2636 | . . . . . . . 8 |
45 | 38, 44 | nfrex 2920 | . . . . . . 7 |
46 | csbeq1a 3443 | . . . . . . . . . . . 12 | |
47 | oieq2 7959 | . . . . . . . . . . . 12 | |
48 | 46, 47 | syl 16 | . . . . . . . . . . 11 |
49 | 17, 48 | syl5eq 2510 | . . . . . . . . . 10 |
50 | 49 | fveq1d 5873 | . . . . . . . . 9 |
51 | 50 | eqeq2d 2471 | . . . . . . . 8 |
52 | 51 | rexbidv 2968 | . . . . . . 7 |
53 | 37, 45, 52 | cbvrex 3081 | . . . . . 6 |
54 | 36, 53 | syl6ib 226 | . . . . 5 |
55 | eliun 4335 | . . . . 5 | |
56 | vex 3112 | . . . . . . . . . . 11 | |
57 | vex 3112 | . . . . . . . . . . 11 | |
58 | 56, 57 | op1std 6810 | . . . . . . . . . 10 |
59 | 58 | csbeq1d 3441 | . . . . . . . . 9 |
60 | oieq2 7959 | . . . . . . . . 9 | |
61 | 59, 60 | syl 16 | . . . . . . . 8 |
62 | 56, 57 | op2ndd 6811 | . . . . . . . 8 |
63 | 61, 62 | fveq12d 5877 | . . . . . . 7 |
64 | 63 | eqeq2d 2471 | . . . . . 6 |
65 | 64 | rexxp 5150 | . . . . 5 |
66 | 54, 55, 65 | 3imtr4g 270 | . . . 4 |
67 | 66 | imp 429 | . . 3 |
68 | 8, 67 | wdomd 8028 | . 2 |
69 | hsmexlem.g | . . 3 | |
70 | 69 | hsmexlem1 8827 | . 2 |
71 | 6, 68, 70 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
[_ csb 3434 C_ wss 3475 ~P cpw 4012
<. cop 4035 U_ ciun 4330 class class class wbr 4452
cep 4794
con0 4883 X. cxp 5002 dom cdm 5004
ran crn 5005 --> wf 5589 -onto-> wfo 5591 ` cfv 5593
c1st 6798
c2nd 6799
Smo wsmo 7035
OrdIso coi 7955
char 8003 cwdom 8004 |
This theorem is referenced by: hsmexlem3 8829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-1st 6800 df-2nd 6801 df-smo 7036 df-recs 7061 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-oi 7956 df-har 8005 df-wdom 8006 |
Copyright terms: Public domain | W3C validator |