![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hsmexlem5 | Unicode version |
Description: Lemma for hsmex 8833. Combining the above constraints, along with itunitc 8822 and tcrank 8323, gives an effective constraint on the rank of . (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem4.x | |
hsmexlem4.h | |
hsmexlem4.u | |
hsmexlem4.s | |
hsmexlem4.o |
Ref | Expression |
---|---|
hsmexlem5 |
S
,, ,, ,,, ,, ,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hsmexlem4.s | . . . . . . . 8 | |
2 | ssrab2 3584 | . . . . . . . 8 | |
3 | 1, 2 | eqsstri 3533 | . . . . . . 7 |
4 | 3 | sseli 3499 | . . . . . 6 |
5 | tcrank 8323 | . . . . . 6 | |
6 | 4, 5 | syl 16 | . . . . 5 |
7 | hsmexlem4.u | . . . . . . . . 9 | |
8 | 7 | itunifn 8818 | . . . . . . . 8 |
9 | fniunfv 6159 | . . . . . . . 8 | |
10 | 8, 9 | syl 16 | . . . . . . 7 |
11 | 7 | itunitc 8822 | . . . . . . 7 |
12 | 10, 11 | syl6reqr 2517 | . . . . . 6 |
13 | 12 | imaeq2d 5342 | . . . . 5 |
14 | imaiun 6157 | . . . . . 6 | |
15 | 14 | a1i 11 | . . . . 5 |
16 | 6, 13, 15 | 3eqtrd 2502 | . . . 4 |
17 | dmresi 5334 | . . . 4 | |
18 | 16, 17 | syl6eqr 2516 | . . 3 |
19 | rankon 8234 | . . . . . 6 | |
20 | 16, 19 | syl6eqelr 2554 | . . . . 5 |
21 | eloni 4893 | . . . . 5 | |
22 | oiid 7987 | . . . . 5 | |
23 | 20, 21, 22 | 3syl 20 | . . . 4 |
24 | 23 | dmeqd 5210 | . . 3 |
25 | 18, 24 | eqtr4d 2501 | . 2 |
26 | omex 8081 | . . . 4 | |
27 | wdomref 8019 | . . . 4 | |
28 | 26, 27 | mp1i 12 | . . 3 |
29 | frfnom 7119 | . . . . . . 7 | |
30 | hsmexlem4.h | . . . . . . . 8 | |
31 | 30 | fneq1i 5680 | . . . . . . 7 |
32 | 29, 31 | mpbir 209 | . . . . . 6 |
33 | fniunfv 6159 | . . . . . 6 | |
34 | 32, 33 | ax-mp 5 | . . . . 5 |
35 | fvex 5881 | . . . . . . 7 | |
36 | 26, 35 | iunonOLD 7029 | . . . . . 6 |
37 | 30 | hsmexlem9 8826 | . . . . . 6 |
38 | 36, 37 | mprg 2820 | . . . . 5 |
39 | 34, 38 | eqeltrri 2542 | . . . 4 |
40 | 39 | a1i 11 | . . 3 |
41 | fvssunirn 5894 | . . . . . 6 | |
42 | hsmexlem4.x | . . . . . . . 8 | |
43 | eqid 2457 | . . . . . . . 8 | |
44 | 42, 30, 7, 1, 43 | hsmexlem4 8830 | . . . . . . 7 |
45 | 44 | ancoms 453 | . . . . . 6 |
46 | 41, 45 | sseldi 3501 | . . . . 5 |
47 | imassrn 5353 | . . . . . . 7 | |
48 | rankf 8233 | . . . . . . . 8 | |
49 | frn 5742 | . . . . . . . 8 | |
50 | 48, 49 | ax-mp 5 | . . . . . . 7 |
51 | 47, 50 | sstri 3512 | . . . . . 6 |
52 | ffun 5738 | . . . . . . . 8 | |
53 | fvex 5881 | . . . . . . . . 9 | |
54 | 53 | funimaex 5671 | . . . . . . . 8 |
55 | 48, 52, 54 | mp2b 10 | . . . . . . 7 |
56 | 55 | elpw 4018 | . . . . . 6 |
57 | 51, 56 | mpbir 209 | . . . . 5 |
58 | 46, 57 | jctil 537 | . . . 4 |
59 | 58 | ralrimiva 2871 | . . 3 |
60 | eqid 2457 | . . . 4 | |
61 | 43, 60 | hsmexlem3 8829 | . . 3 |
62 | 28, 40, 59, 61 | syl21anc 1227 | . 2 |
63 | 25, 62 | eqeltrd 2545 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
{ crab 2811 cvv 3109
C_ wss 3475 ~P cpw 4012 { csn 4029
U. cuni 4249 U_ ciun 4330 class class class wbr 4452
e. cmpt 4510 cep 4794
cid 4795
Ord word 4882
con0 4883 X. cxp 5002 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
Fun wfun 5587
Fn wfn 5588 --> wf 5589 ` cfv 5593
com 6700
rec crdg 7094
cdom 7534 OrdIso coi 7955 char 8003 cwdom 8004 ctc 8188 cr1 8201
crnk 8202 |
This theorem is referenced by: hsmexlem6 8832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-1st 6800 df-2nd 6801 df-smo 7036 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-oi 7956 df-har 8005 df-wdom 8006 df-tc 8189 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |