![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > hta | Unicode version |
Description: A ZFC emulation of
Hilbert's transfinite axiom. The set has the
properties of Hilbert's epsilon, except that it also depends on a
well-ordering . This theorem arose from
discussions with Raph
Levien on 5-Mar-2004 about translating the HOL proof language, which
uses Hilbert's epsilon. See
http://us.metamath.org/downloads/choice.txt
(copy of obsolete link
http://ghilbert.org/choice.txt) and
http://us.metamath.org/downloads/megillaward2005he.pdf.
Hilbert's epsilon is described at
http://plato.stanford.edu/entries/epsilon-calculus/.
This theorem
differs from Hilbert's transfinite axiom described on that page in that
it requires as an
antecedent. Class collects the sets
of the least rank for which If a well-ordering on can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace with a dummy setvar variable, say , and attach as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, (which will have as a free variable) will no longer be present, and we can eliminate by applying exlimiv 1722 and weth 8896, using scottexs 8326 to establish the existence of . For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 8335. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
hta.1 | |
hta.2 |
Ref | Expression |
---|---|
hta |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1857 | . . 3 | |
2 | scott0s 8327 | . . . 4 | |
3 | hta.1 | . . . . 5 | |
4 | 3 | neeq1i 2742 | . . . 4 |
5 | 2, 4 | bitr4i 252 | . . 3 |
6 | 1, 5 | sylib 196 | . 2 |
7 | scottexs 8326 | . . . . 5 | |
8 | 3, 7 | eqeltri 2541 | . . . 4 |
9 | hta.2 | . . . 4 | |
10 | 8, 9 | htalem 8335 | . . 3 |
11 | 10 | ex 434 | . 2 |
12 | simpl 457 | . . . . . 6 | |
13 | 12 | ss2abi 3571 | . . . . 5 |
14 | 3, 13 | eqsstri 3533 | . . . 4 |
15 | 14 | sseli 3499 | . . 3 |
16 | df-sbc 3328 | . . 3 | |
17 | 15, 16 | sylibr 212 | . 2 |
18 | 6, 11, 17 | syl56 34 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 cvv 3109
[. wsbc 3327 C_ wss 3475 c0 3784 class class class wbr 4452
We wwe 4842 ` cfv 5593 iota_ crio 6256
crnk 8202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-iin 4333 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |