MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htalem Unicode version

Theorem htalem 8335
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom," described on that page, with the additional antecedent. The element is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
htalem.1
htalem.2
Assertion
Ref Expression
htalem
Distinct variable groups:   , ,   , ,

Proof of Theorem htalem
StepHypRef Expression
1 htalem.2 . 2
2 simpl 457 . . . 4
3 htalem.1 . . . . 5
43a1i 11 . . . 4
5 ssid 3522 . . . . 5
65a1i 11 . . . 4
7 simpr 461 . . . 4
8 wereu 4880 . . . 4
92, 4, 6, 7, 8syl13anc 1230 . . 3
10 riotacl 6272 . . 3
119, 10syl 16 . 2
121, 11syl5eqel 2549 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  =/=wne 2652  A.wral 2807  E!wreu 2809   cvv 3109  C_wss 3475   c0 3784   class class class wbr 4452  Wewwe 4842  iota_crio 6256
This theorem is referenced by:  hta  8336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-iota 5556  df-riota 6257
  Copyright terms: Public domain W3C validator