![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > htalem | Unicode version |
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom," described on that page, with the additional antecedent. The element is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
htalem.1 | |
htalem.2 |
Ref | Expression |
---|---|
htalem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htalem.2 | . 2 | |
2 | simpl 457 | . . . 4 | |
3 | htalem.1 | . . . . 5 | |
4 | 3 | a1i 11 | . . . 4 |
5 | ssid 3522 | . . . . 5 | |
6 | 5 | a1i 11 | . . . 4 |
7 | simpr 461 | . . . 4 | |
8 | wereu 4880 | . . . 4 | |
9 | 2, 4, 6, 7, 8 | syl13anc 1230 | . . 3 |
10 | riotacl 6272 | . . 3 | |
11 | 9, 10 | syl 16 | . 2 |
12 | 1, 11 | syl5eqel 2549 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E! wreu 2809
cvv 3109
C_ wss 3475 c0 3784 class class class wbr 4452
We wwe 4842 iota_ crio 6256 |
This theorem is referenced by: hta 8336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-iota 5556 df-riota 6257 |
Copyright terms: Public domain | W3C validator |