![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > infcntss | Unicode version |
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
infcntss.1 |
Ref | Expression |
---|---|
infcntss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcntss.1 | . . 3 | |
2 | 1 | domen 7549 | . 2 |
3 | ensym 7584 | . . . . 5 | |
4 | 3 | anim2i 569 | . . . 4 |
5 | 4 | ancoms 453 | . . 3 |
6 | 5 | eximi 1656 | . 2 |
7 | 2, 6 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
E. wex 1612 e. wcel 1818 cvv 3109
C_ wss 3475 class class class wbr 4452
com 6700
cen 7533 cdom 7534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-er 7330 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |