![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > jad | Unicode version |
Description: Deduction form of ja 161. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
jad.1 | |
jad.2 |
Ref | Expression |
---|---|
jad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jad.1 | . . . 4 | |
2 | 1 | com12 31 | . . 3 |
3 | jad.2 | . . . 4 | |
4 | 3 | com12 31 | . . 3 |
5 | 2, 4 | ja 161 | . 2 |
6 | 5 | com12 31 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4 |
This theorem is referenced by: pm2.6 170 pm2.65 172 merco2 1569 ax12indi 2274 wereu2 4881 isfin7-2 8797 axpowndlem3 8996 axpowndlem3OLD 8997 suppssfz 12100 lo1bdd2 13347 pntlem3 23794 hbimtg 29239 arg-ax 29881 onsuct0 29906 ordcmp 29912 wl-embantd 29976 hbimpg 33327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
Copyright terms: Public domain | W3C validator |