MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jad Unicode version

Theorem jad 162
Description: Deduction form of ja 161. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypotheses
Ref Expression
jad.1
jad.2
Assertion
Ref Expression
jad

Proof of Theorem jad
StepHypRef Expression
1 jad.1 . . . 4
21com12 31 . . 3
3 jad.2 . . . 4
43com12 31 . . 3
52, 4ja 161 . 2
65com12 31 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  pm2.6  170  pm2.65  172  merco2  1569  ax12indi  2274  wereu2  4881  isfin7-2  8797  axpowndlem3  8996  axpowndlem3OLD  8997  suppssfz  12100  lo1bdd2  13347  pntlem3  23794  hbimtg  29239  arg-ax  29881  onsuct0  29906  ordcmp  29912  wl-embantd  29976  hbimpg  33327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
  Copyright terms: Public domain W3C validator